Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

НОВЫЕ ПАТОГЕНЕТИЧЕСКИЕ ФАКТОРЫ РАЗВИТИЯ И ВОЗМОЖНЫЕ ПОДХОДЫ К ЛЕЧЕНИЮ АТЕРОСКЛЕРОЗА

https://doi.org/10.15829/1728-8800-2013-5-87-90

Полный текст:

Аннотация

В патогенезе атеросклероза с последующим развитием инфаркта (ИМ), инсульта (МИ) или внезапной смерти (ВС) существенную роль играет триметиламиноксид (ТМАО), который образуется в результате деградирования диетарного холина, бетаина или карнитина микрофлорой кишечника человека. При одновременно повышенных уровнях триметиламиноксида и карнитина количество ИМ, МИ и ВС от ССЗ возрастает в 2–3 раза. Из этого следует, что употребление с пищей богатых холином фосфатидилхолиновых жиров, красного мяса и молочных продуктов, богатых карнитином, является существенным фактором риска (ФР) развития атеросклероза. Общепризнанной терапии для снижения уровня ТМАО и карнитина на сегодняшний день не существует. Единственным лекарственным препаратом в мире, который способен одновременно снижать два существенных фактора, ассоциированных с развитием атеросклероза у людей — ТМАО и карнитин, является известный кардио- и цитопротектор Милдронат. Экспериментальные и пилотные клинические исследования эффективности Милдроната у больных с облитерирующим атеросклерозом также являются весомой предпосылкой проведения углубленных клинических исследований по оценке эффективности и безопасности длительного применения Милдроната для профилактики и лечения атеросклероза. 

Об авторе

И. Я. Калвиньш
Латвийский Институт органического синтеза, Рига
Латвия

профессор, академик АН Латвии, хабилитированный доктор химических наук, директор

Тел. +37129153226, +37167553233 



Список литературы

1. Brunzell JD, Davidson M, Furberg CD, et al. Lipoprotein management in patients with cardiometabolic risk. Diabetes Care. 2008; 31:811–22.

2. Nishida C and Uauy R. WHO Scientific Update on health consequences of trans fatty acids. Eur J Clin Nutr 63: S1-S4; doi:10.1038/ejcn.2009.13.

3. Siri-Tarino PW, Sun Q, Hu FB, et al. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010; 91:535–46.

4. Artraud-Wild SM, Conor SL, Sexton G, et al. Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 1993; 88 (6):2771–9.

5. Hockley T, Gemmill M. European Cholesterol Guidelines Report. http:// www.policy-centre.com/downloads/European-Cholesterol-Guidelines07.pdf.

6. Bernstein AM, Qi Sun, Hu FB, et al. Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010; 122:876–83.

7. Micha R, Wallace SK, Mozaffarian D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 2010; 121:2271–83.

8. Muller-Nordhorn J, Binting S, Roll S, et al. An update on regional variation in cardiovascular mortality within Europe. Eur Heart J 2008; 29:1316–26.

9. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N Engl J Med 2013; 368:1279–90. Литература

10. Zeneng Wang, Klipfell BJ, Bennett R, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472:57–64.

11. Rader DJ. Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol 2003; 92: 42J-9.

12. Spann NJ, Garmire LX, McDonald JG, et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012; 151: 138–52.

13. Ohashi R, Mu H, Wang X, et al. Reverse cholesterol transport and cholesterol efflux in atherosclerosis, December 2005; 98 (12):845–56.

14. Yuan Yuan, Peng Li, Jing Ye. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 2012; 3 (3):173–81.

15. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 7 April 2013; 1–12. doi:10.1038/nm.3145.

16. Rebouche CJ, Mack DL, Edmonson PF. L–Carnitine dissimilation in the gastrointestinal tract of the rat. Biochemistry 1984; 23:6422–6.

17. Rebouche CJ, Chenard CA. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J. Nutr. 1991; 121: 539–46.

18. Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann NY Acad Sci 2004; 1033:30–41.

19. Dambrova M, Liepinsh E, Kalvinsh I. Mildronate: cardioprotective action through carnitine-lowering effect. Trends Cardiovasc Med 2002; 12:275–9.

20. Liepinsh E, Konrade I, Skapare E, et al. Mildronate treatment alters γ-butyrobetaine and L-carnitine concentrations in healthy volunteers. Journal of Pharmacy and Pharmacology 2011; 63: 1195–201.

21. Kuka J, Vilskersts R, Cirule H, et al. The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine. J Cardiovasc Pharmacol Ther 2012;17:215–22.

22. Vilskersts R, Liepinsh E, Mateuszuk L, et al. Mildronate, a regulator of energy metabolism, reduces atherosclerosis in apoE/LDR-/- mice. Pharmacology 2009; 83 (5):287–93.

23. Liepinsh E, Skapare E, Vavers E, et al. High L-carnitine concentrations do not prevent late diabetic complications in type 1 and 2 diabetic patients. Nutrition Research 2012; 32 (5):320–7.

24. Dambrova M, Skapare-Makarova E, Konrade I, et al. Meldonium decreases the diet-increased plasma levels of trimethylamine N-Oxide, a metabolite associated with atherosclerosis. The Journal of Clinical Pharmacology 2013; 53 (10):1095–8.

25. Dzerve VJa, Pozdnjakov JuM. Exercise capacity in patients with coronary heart disease and peripheral artery disease, receiving longterm mildronate therapy. Russ J Cardiol 2011; 87 (1):49–55. Russian (Дзерве В.Я., Поздняков Ю.М. Динамика толерантности к физической нагрузке у пациентов с ишемической болезнью сердца и периферической болезнью артерий на фоне длительной терапии милдронатом. Российский кардиологический журнал. 2011; 87 (1):49–55).

26. Dzerve V. A dose-dependent improvement in exercise tolerance in patients with stable angina treated with mildronate: a clinical trial “MILSS I”. MILSS I Study Group. Medicina (Kaunas) 2011; 47 (10):544–51.

27. Mikhin VP, Hlebodarov FE. Mildronate potential in patients with cardiovascular disease. Russ J Cardiol 2010; 4:83–92. Russian (Михин В.П., Хлебодаров Ф.Е. Перспективы применения милдроната у больных с сердечно-сoсудистой патологией. Российский кардиологический журнал 2010; 4:83–92).


Для цитирования:


Калвиньш И.Я. НОВЫЕ ПАТОГЕНЕТИЧЕСКИЕ ФАКТОРЫ РАЗВИТИЯ И ВОЗМОЖНЫЕ ПОДХОДЫ К ЛЕЧЕНИЮ АТЕРОСКЛЕРОЗА. Кардиоваскулярная терапия и профилактика. 2013;12(5):87-90. https://doi.org/10.15829/1728-8800-2013-5-87-90

For citation:


Kalvinsh I.Y. NEW PATHOGENETIC FACTORS OF ATHEROSCLEROSIS DEVELOPMENT AND POTENTIAL THERAPEUTIC APPROACHES. Cardiovascular Therapy and Prevention. 2013;12(5):87-90. (In Russ.) https://doi.org/10.15829/1728-8800-2013-5-87-90

Просмотров: 214


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)