Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

СЕРДЦЕ И ВОЗРАСТ (ЧАСТЬ III): МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРОЦЕССЫ СТАРЕНИЯ

https://doi.org/10.15829/1728-8800-2013-5-91-96

Полный текст:

Аннотация

В настоящее время наблюдается рост популяции пожилых людей. Возраст является одним из основных факторов риска (ФР) сердечно-сосудистых заболеваний. Тем не менее, основные усилия специалистов профилактической медицины направлены на “модифицируемые” ФР, такие как артериальная гипертония, гиперхолестеринемия, курение и т. д., в то время как возраст рассматривается как не модифицируемый, не поддающийся коррекции ФР. В связи с чем, представляется важным определение механизмов старения сердца и возможных способов влияния на него. Все известные на сегодня методы воздействия на процессы старения сердца не имеют до сих пор клинического применения и требуют дальнейшего изучения. Основные методы воздействия представлены в данной статье. 

Об авторах

Д. У. Акашева
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия

к. м.н., с. н.с. отдела комплексного снижения риска неинфекционных заболеваний

Тел.: 8–903–526–44–81 



Е. В. Плохова
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия
аспирант отдела


И. Д. Стражеско
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия
к. м.н., в. н.с. отдела


Е. Н. Дудинская
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия
к. м.н., н. с. отдела


О. Н. Ткачева
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия
д. м.н., проф., руководитель отдела


Список литературы

1. José Marín-García. Aging and the Heart. A Post-Genomic View. Springer 2008; 443–4.

2. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007; 100: 460–73.

3. Duque G. Apoptosis in cardiovascular aging research: future directions. Am J Geriatr Cardiol 2000; 9: 263–4.

4. Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 2007; 12 (5): 835–40.

5. Atlante A, Seccia TM, Marra E, et al. The rate of ATP export in the extramitochondrial phase via the adenine nucleotide translocator changes in aging in mitochondria isolated from heart left ventricle of either normotensive or spontaneously hypertensive rats. Mech Ageing Dev 2011; 132 (10): 488–95.

6. Giorgio V, Soriano ME, Basso E, et al. Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 2010; 1797 (6–7): 1113–8.

7. Trifunovic A, Hansson A, Wredenberg A, et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 2005; 102: 17993–8.

8. Faucher F, Doublié S, Jia Z. 8-oxoguanine DNA glycosylases: one lesion, three subfamilies. Int J Mol Sci 2012; 13 (6): 6711–29.

9. Dobson AW, Xu Y, Kelley MR, et al. Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem 2000; 275: 37518–23.

10. Sato A, Nakada K, Hayashi J. Mitochondrial dynamics and aging: Mitochondrial interaction preventing individuals from expression of respiratory deficiency caused by mutant mtDNA. Biochim Biophys Acta 2006; 1763 (5–6): 473–81.

11. Frantz MC, Wipf P. Mitochondria as a target in treatment. Environ Mol Mutagen 2010; 51 (5): 462–75.

12. Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 2006; 8: 343–75.

13. Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann NY Acad Sci 2000; 908: 219–25.

14. Tang YL, Qian K, Zhang YC, et al. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo. J Cardiovasc Pharmacol Ther 2005; 10: 251–63.

15. Linford NJ, Schriner SE, Rabinovitch PS. Oxidative damage and aging: spotlight on mitochondria. Cancer Res. 2006; 66 (5): 2497–9.

16. Abunasra HJ, Smolenski RT, Morrison K, et al. Efficacy of adenoviral gene transfer with manganese superoxide dismutase and endothelial nitric oxide synthase in reducing ischemia and reperfusion injury. Eur J Cardiothorac Surg 2001; 20: 153–8.

17. Melo LG, Agrawal R, Zhang L, et al. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of hemeoxygenase gene. Circulation 2002; 105: 602–7.

18. Liu X, Pachori AS, Ward CA, et al. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function. FASEB J 2006; 20: 207–16.

19. Littarru GP, Tiano L, Belardinelli R, et al. Coenzyme Q (10), endothelial function, and cardiovascular disease. Biofactors 2011; 37 (5): 366–73.

20. Lesnefsky EJ, He D, Moghaddas S, et al. Reversal of mitochondrial defects before ischemia protects the aged heart. FASEB J 2006; 20: 1543–5.

21. Kumaran S, Savitha S, Anusuya Devi M, et al. L-carnitine and DL-alpha-lipoic acid reverse the age-related deficit in glutathione redox state in skeletal muscle and heart tissues. Mech Ageing Dev 2004; 125: 507–12.

22. Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 2006; 8: 343–75.

23. SofieBekaert, Tim De Meyer. Telomere Attrition as Ageing Biomarker. Anticancer Research 2005; 25: 3011–22.

24. Fyhrquist F, Saijonmaa O. Telomere length and cardiovascular aging. Ann Med 2012; 44 (1): S138–42.

25. Oh H, Taffet GE, Youker KA, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Pro Natl Acad Sci USA 2001; 98: 10308–13.

26. Madonna R, De Caterina R, Willerson JT, et al. Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration. Eur Heart J 2011; 32 (10): 1190–6.

27. Voghel G, Thorin-Trescases N, Farhat N, et al. Chronic treatment with N-acetyl-cystein delays cellular senescence in endothelial cells isolated from a subgroup of atherosclerotic patients. Mech Ageing Dev 2008; 129: 261–70.

28. Gleichmann U, Gleichmann US, Gleichmann S. From cardiovascular prevention to anti-aging medicine: influence on telomere and cell aging. Dtsch Med Wochenschr 2011; 136 (38): 1913–6.

29. Werner Ch, Hanhoun M. Effects of Physical Exercise on Myocardial Telomere-Regulating Proteins. JACC 2008; 52: 470–82.

30. Schmidt U, del Monte F, Miyamoto MI, et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca (2+) -ATPase. Circulation 2000; 101 (7): 790–6.

31. Xin W, Lu XC, Li XY, et al. Effects of sarcoplasmic reticulum Ca (2+) -ATPase gene transfer in a minipig model of chronic ischemic heart failure. Zhonghua Xin Xue Guan Bing Za Zhi 2011; 39 (4): 336–42.

32. Schmidt U, Zhu X, Lebeche D, et al. In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. Cardiovasc Res 2005; 66 (2): 318–23.

33. Wang W, Martindale J, Metzger JM. Parvalbumin: Targeting calcium handling in cardiac diastolic dysfunction. Gen Physiol Biophys 2009; 28 Spec No Focus: F3–6.

34. Terman A, Brunk UT. Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 2005; 68 (3): 355–65.

35. Donati A. The involvement of macroautophagy in aging and anti-aging interventions. Mol Aspects Med 2006; 27: 455–70.

36. Donati A, Cavallini G, Carresi C, et al. Anti-aging effects of anti-lipolytic drugs. Exp Gerontol 2004; 39 (7): 1061–7.

37. Nair S, Ren J. Autophagy and cardiovascular aging: Lesson learned from rapamycin. Cell Cycle 2012; 11 (11): 2092–9.

38. Katewa SD, Kapahi P. Role of TOR signaling in aging and related biological processes in Drosophila melanogaster. Exp Gerontol 2011; 46 (5): 382–90.

39. Inuzuka Y, Okuda J, Kawashima T, et al. Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation 2009; 120 (17): 1695–703.

40. Blagosklonny MV. Once again on rapamycin-induced insulin resistance and longevity: despite of or owing to. Aging 2012; 4 (5): 350–8.

41. Blagosklonny MV. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov Today 2007; 12 (5–6): 218–24.

42. Liu M, Liu F. Resveratrol inhibits mTOR signaling by targeting DEPTOR. Commun Integr Biol 2011; 4 (4): 382–4.

43. Valenzano DR, Terzibasi E, Genade T, et al. Resveratrol prolongs life span and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 2006; 16: 296–300.

44. de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 2007; 35 (5): 1156–60.

45. Donnelly LE, Newton R, Kennedy GE, et al. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 2004; 287 (4): L774–83.

46. de Grey AD, Alvarez PJ, Brady RO, et al. Medical bioremediation: prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. Ageing Res Rev 2005; 4 (3): 315–38.

47. Dhahbi JM, Tsuchiya T, Kim HJ, et al. Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol A Biol Sci Med Sci 2006; 61: 218–31.

48. Richie JP, Leutzinger Y, Parthasarathy S, et al. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 1994; 8: 1302–7.

49. Zainal TA, Oberley TD, Allison DB, et al. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 2000; 14: 1825–36.

50. Roth GS, Lane MA, Ingram DK, et al. Biomarkers of caloric restriction may predict longevity in humans. Science 2002; 297 (5582): 811.

51. Barja G. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev 2004; 79: 235–51.

52. Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310: 314–7.

53. Donati A, Taddei M, Cavallini G, et al. Stimulation of macroautophagy can rescue older cells from 8-OHdG mtDNA accumulation: a safe and easy way to meet goals in the SENS agenda. Rejuvenation Res 2006; 9: 408–12.

54. Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field. Aging Cell 2006; 5: 97–108.

55. Bulterijs S. Metformin as a geroprotector. Rejuvenation Res 2011; 14 (5): 469–82.

56. Corbi G, Conti V, Scapagnini G, et al. Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci (Elite Ed) 2012; 4: 768–78.

57. Iemitsu M, Miyauchi T, Maeda S, et al. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am J Physiol Heart Circ Physiol 2004; 286: H1696–705.

58. Armin Arbab-Zadeh, Erika Dijk, Anand Prasad, et al. Effect of Aging and Physical Activity on Left Ventricular Compliance. Circulation 2004; 110: 1799–805.

59. Choi SY, Chang HJ, Choi SI, et al. Long-term exercise training attenuates age-related diastolic dysfunction: association of myocardial collagen cross-linking. J Korean Med Sci 2009; 24 (1): 32–9.

60. Conti V, Corbi G, Russomanno G, et al. Oxidative stress efects on endothelial cells treated with dierent athletes’ sera. Medicine& Science in Sports & Exercise 2013; 44 (1): 39–49.

61. Graziamaria Corbi, Valeria Conti, GiusyRussomanno, et al. Is Physical Activity Able to Modify Oxidative Damage in Cardiovascular Aging? Oxidative Medicine and Cellular Longevity 2012; 2012: 728547.

62. Kemi OJ, Ceci M, Condorelli G, et al. Myocardial sarcoplasmic reticulum Ca2+ ATPase function is increased by aerobic interval training. Eur J Cardiovasc Prev Rehabil 2008; 15 (2): 145–8.

63. Christian Werner, Milad Hanhoun, Thomas Widmann, et al. Effects of Physical Exercise on Myocardial Telomere-Regulating Proteins, Survival Pathways, and Apoptosis. JACC 2008; 52 (6): 470–82.


Для цитирования:


Акашева Д.У., Плохова Е.В., Стражеско И.Д., Дудинская Е.Н., Ткачева О.Н. СЕРДЦЕ И ВОЗРАСТ (ЧАСТЬ III): МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРОЦЕССЫ СТАРЕНИЯ. Кардиоваскулярная терапия и профилактика. 2013;12(5):91-96. https://doi.org/10.15829/1728-8800-2013-5-91-96

For citation:


Akasheva D.U., Plokhova E.V., Strazhesko I.D., Dudinskaya E.N., Tkacheva O.N. HEART AND AGE (PART III): MODIFYING AGEING PROCESSES. Cardiovascular Therapy and Prevention. 2013;12(5):91-96. (In Russ.) https://doi.org/10.15829/1728-8800-2013-5-91-96

Просмотров: 248


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)