Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Феномен проницаемости кишечной стенки и его взаимосвязь с сердечно-сосудистыми заболеваниями. Современные представления о проблеме

https://doi.org/10.15829/1728-8800-2020-2474

Полный текст:

Аннотация

Возможные изменения проницаемости кишечного барьера при различных патологиях широко обсуждаются в научном сообществе. До сих пор нет единого мнения, может ли высокая проницаемость кишечной стенки приводить к хроническим неинфекционным заболеваниям, однако появляется все больше сведений, что повышенная проницаемость может усугублять течение некоторых из них. В статье рассмотрено современное видение проблемы проницаемости, в т.ч. его потенциальный вклад в развитие сердечно-сосудистых патологий, которые по сей день являются причиной смертности номер один как в России, так и во всем мире.

Об авторах

Д. А. Каштанова
ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России Обособленное структурное подразделение «Российский геронтологический научно-клинический центр»
Россия

Каштанова Дарья Андреевна — старший научный сотрудник лаборатории трансляционных исследований в геронтологии

Москва



О. Н. Ткачева
ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России Обособленное структурное подразделение «Российский геронтологический научно-клинический центр»
Россия

Ткачева Ольга Николаевна — директор

Москва



Список литературы

1. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809. doi:10.1038/nri2653.

2. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4:478-85. doi:10.1038/nri1373.

3. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231-41. doi:10.1038/nature11551.

4. Moreira AP, Texeira TF, Ferreira AB, et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108:801-9. doi:10.1017/S0007114512001213.

5. Драпкина O.M., Корнеева O.Н. Кишечная микробиота и ожирение. Патогенетические взаимосвязи и пути нормализации кишечной микрофлоры. Терапевтический архив. 2016;88:135- 42. doi:10.17116/terarkh2016889135-142.

6. Булгакова С.В., Тренева E.В., Захарова Н.O. и др. Кишечная микробиота: связь с возраст-ассоциированными заболеваниями (обзор литературы). Клин Лаб Диагн. 2019;64:250-6. doi:10.18821/0869-2084-2019-64-4-250-256.

7. Hui W, Li T, Liu W, et al. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: An updated randomized controlled trial meta-analysis. PLoS One. 2019;14:e0210016. doi:10.1371/journal.pone.0210016.

8. Quraishi MN, Widlak M, Bhala N, et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther. 2017;46:479-93. doi:10.1111/apt.14201.

9. Costello SP, Hughes PA, Waters O, et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA. 2019;321:156-64. doi:10.1001/jama.2018.20046.

10. Kootte RS, Levin E, Salojarvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26:611-9 e6. doi:10.1016/j.cmet.2017.09.008.

11. Cheng S, Ma X, Geng S, et al. Fecal Microbiota Transplantation Beneficially Regulates Intestinal Mucosal Autophagy and Alleviates Gut Barrier Injury. mSystems. 2018;3. doi:10.1128/mSystems.00137-18.

12. Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphiladerived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50:e450. doi:10.1038/emm.2017.282.

13. Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17:584-93. doi:10.1016/j.molmed.2011.05.011.

14. Capaldo CT, Powell DN, Kalman D. Layered defense: how mucus and tight junctions seal the intestinal barrier. J Mol Med (Berl). 2017;95:927-34. doi:10.1007/s00109-017-1557-x.

15. Dorofeyev AE, Vasilenko IV, Rassokhina OA, et al. Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol Res Pract. 2013;2013:431231. doi:10.1155/2013/431231.

16. Wenzel UA, Magnusson MK, Rydstrom A, et al. Spontaneous colitis in Muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS One. 2014;9:e100217. doi:10.1371/journal.pone.0100217.

17. Fu J, Wei B, Wen T, et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest. 2011;121:1657-66. doi:10.1172/JCI45538.

18. Rajilic-Stojanovic M, Shanahan F, Guarner F, et al. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013;19:481-8. doi:10.1097/MIB.0b013e31827fec6d.

19. Png CW, Linden SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420-8. doi:10.1038/ajg.2010.281.

20. Van Itallie CM, Tietgens AJ, Anderson JM. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell. 2017;28:524-34. doi:10.1091/mbc.E16-10-0698.

21. Beier LS, Rossa J, Woodhouse S, et al. Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. Int J Mol Sci. 2019;20. doi:10.3390/ijms20194774.

22. Ahmad R, Sorrell MF, Batra SK, et al. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol. 2017;10:307-17. doi:10.1038/mi.2016.128.

23. Takechi R, Lam V, Brook E, et al. Blood-Brain Barrier Dysfunction Precedes Cognitive Decline and Neurodegeneration in Diabetic Insulin Resistant Mouse Model: An Implication for Causal Link. Front Aging Neurosci. 2017;9:399. doi:10.3389/fnagi.2017.00399.

24. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667-85. doi:10.1038/nri3738.

25. Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol. 2019;10:1873. doi:10.3389/fimmu.2019.01873.

26. Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017;17:761-73. doi:10.1038/nri.2017.100.

27. Spadoni I, Pietrelli A, Pesole G, et al. Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes. 2016;7:540-8. doi:10.1080/19490976.2016.1239681.

28. Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350:830-4. doi:10.1126/science.aad0135.

29. Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol. 2017;312:G413-9. doi:10.1152/ajpgi.00361.2016.

30. Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT, et al. Hepatocyte Toll-Like Receptor 5 Promotes Bacterial Clearance and Protects Mice Against High-Fat Diet-Induced Liver Disease. Cell Mol Gastroenterol Hepatol. 2016;2:584-604. doi:10.1016/j.jcmgh.2016.04.007.

31. Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol. 2018;68-69:452-62. doi:10.1016/j.matbio.2017.11.011.

32. Wree A, Broderick L, Canbay A, et al. From NAFLD to NASH to cirrhosisnew insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10:627-36. doi:10.1038/nrgastro.2013.149.

33. Ponziani FR, Zocco MA, Cerrito L, et al. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol. 2018;12:641-56. doi:10.1080/17474124.2018.1481747.

34. Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46:556- 60. doi:10.1016/j.dld.2014.02.010.

35. Leung C, Rivera L, Furness JB, et al. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13:412-25. doi:10.1038/nrgastro.2016.85.

36. Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol. 2015;7:425-42. doi:10.4254/wjh.v7.i3.425.

37. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60:197-209. doi:10.1016/j.jhep.2013.07.044.

38. Chen Y, Guo J, Shi D, et al. Ascitic Bacterial Composition Is Associated With Clinical Outcomes in Cirrhotic Patients With Culture-Negative and Non-neutrocytic Ascites. Front Cell Infect Microbiol. 2018;8:420. doi:10.3389/fcimb.2018.00420.

39. Huang LT, Hung JF, Chen CC, et al. Endotoxemia exacerbates kidney injury and increases asymmetric dimethylarginine in young bile duct-ligated rats. Shock. 2012;37:441-8. doi:10.1097/SHK.0b013e318244b787.

40. Wijdicks EF. Hepatic Encephalopathy. N Engl J Med. 2016;375:1660-70. doi:10.1056/NEJMra1600561.

41. Violi F, Lip GY, Cangemi R. Endotoxemia as a trigger of thrombosis in cirrhosis. Haematologica. 2016;101:e162-3. doi:10.3324/haematol.2015.139972.

42. Sainsbury A, Sanders DS, Ford AC. Meta-analysis: Coeliac disease and hypertransaminasaemia. Aliment Pharmacol Ther. 2011;34:33-40. doi:10.1111/j.1365-2036.2011.04685.x.

43. Wang L, Llorente C, Hartmann P, et al. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods. 2015;421:44-53. doi:10.1016/j.jim.2014.12.015.

44. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258:25-33. doi:10.1111/j.1749-6632.2012.06538.x.

45. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140:900-17. doi:10.1016/j.cell.2010.02.034.

46. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207-15. doi:10.1016/S2213-8587(14)70134-2.

47. Piya MK, Harte AL, McTernan PG. Metabolic endotoxaemia: is it more than just a gut feeling? Curr Opin Lipidol. 2013;24:78-85. doi:10.1097/MOL.0b013e32835b4431.

48. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179-85. doi:10.1038/nature10809.

49. Kallio KA, Hatonen KA, Lehto M, et al. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 2015;52:395-404. doi:10.1007/s00592-014-0662-3.

50. Wilms E, Troost FJ, Elizalde M, et al. Intestinal barrier function is maintained with aging — a comprehensive study in healthy subjects and irritable bowel syndrome patients. Sci Rep. 2020;10:475. doi:10.1038/s41598-019-57106-2.

51. Sumida K, Molnar MZ, Potukuchi PK, et al. Constipation and risk of death and cardiovascular events. Atherosclerosis. 2019;281:114- 20. doi:10.1016/j.atherosclerosis.2018.12.021.

52. Sket R, Treichel N, Debevec T, et al. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study. Front Physiol. 2017;8:250. doi:10.3389/fphys.2017.00250.

53. Rungoe C, Basit S, Ranthe MF, et al. Risk of ischaemic heart disease in patients with inflammatory bowel disease: a nationwide Danish cohort study. Gut. 2013;62:689-94. doi:10.1136/gutjnl-2012-303285.

54. Kim S, Goel R, Kumar A, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132:701-18. doi:10.1042/CS20180087.

55. Rogler G, Rosano G. The heart and the gut. Eur Heart J. 2014;35:426-30. doi:10.1093/eurheartj/eht271.

56. Sandek A, Bjarnason I, Volk HD, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. International journal of cardiology. 2012;157:80-5. doi:10.1016/j.ijcard.2010.12.016.

57. Jin M, Qian Z, Yin J, et al. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med. 2019;23:2343-50. doi:10.1111/jcmm.14195.

58. Bielinska K, Radkowski M, Grochowska M, et al. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutrition. 2018;54:33-9. doi:10.1016/j.nut.2018.03.004.

59. Jaworska K, Huc T, Samborowska E, et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One. 2017;12:e0189310. doi:10.1371/journal.pone.0189310.

60. Janeiro MH, Ramirez MJ, Milagro FI, et al. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. doi:10.3390/nu10101398.

61. Heianza Y, Ma W, Manson JE, et al. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J Am Heart Assoc. 2017;6(7):e004947. doi:10.1161/JAHA.116.004947.

62. Widmer RJ, Flammer AJ, Lerman LO, et al. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128:229-38. doi:10.1016/j.amjmed.2014.10.014.

63. Gibson R, Lau CE, Loo RL, et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am J Clin Nutr. 2020;111(4):919. doi:10.1093/ajcn/nqz293.

64. Jaworska K, Hering D, Mosieniak G, et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins (Basel). 2019;11(9):490. doi:10.3390/toxins11090490.

65. Kashtanova DA, Tkacheva ON, Doudinskaya EN, et al. Gut Microbiota in Patients with Different Metabolic Statuses: Moscow Study. Microorganisms. 2018;6(4):98. doi:10.3390/microorganisms6040098.

66. Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4592-8. doi:10.1073/pnas.1011383107.

67. Armingohar Z, Jorgensen JJ, Kristoffersen AK, et al. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol. 2014;6:10. doi:10.3402/jom.v6.23408.

68. Wang J, Si Y, Wu C, et al. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-kappaB pathway. Lipids Health Dis. 2012;11:139. doi:10.1186/1476-511X-11-139.

69. Carnevale R, Nocella C, Petrozza V, et al. Localization of lipopolysaccharide from Escherichia Coli into human atherosclerotic plaque. Sci Rep. 2018;8:3598. doi:10.1038/s41598-018-22076-4.

70. Li J, Lin S, Vanhoutte PM, et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice. Circulation. 2016;133:2434-46. doi:10.1161/CIRCULATIONAHA.115.019645.

71. Laffin M, Fedorak R, Zalasky A, et al. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal shortchain fatty acids in mice. Sci Rep. 2019;9:12294. doi:10.1038/s41598-019-48749-2.

72. Hamilton MK, Boudry G, Lemay DG, et al. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015;308:G840-51. doi:10.1152/ajpgi.00029.2015.

73. Araujo JR, Tomas J, Brenner C, et al. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie. 2017;141:97-106. doi:10.1016/j.biochi.2017.05.019.

74. Shi C, Li H, Qu X, et al. High fat diet exacerbates intestinal barrier dysfunction and changes gut microbiota in intestinal-specific ACF7 knockout mice. Biomed Pharmacother. 2019;110:537-45. doi:10.1016/j.biopha.2018.11.100.

75. Holota Y, Dovbynchuk T, Kaji I, et al. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One. 2019;14:e0220642. doi:10.1371/journal.pone.0220642.

76. Chambers ES, Preston T, Frost G, et al. Role of Gut MicrobiotaGenerated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018;7:198-206. doi:10.1007/s13668-018-0248-8.

77. Quagliani D, Felt-Gunderson P. Closing America’s Fiber Intake Gap: Communication Strategies From a Food and Fiber Summit. Am J Lifestyle Med. 2017;11:80-5. doi:10.1177/1559827615588079.

78. Shrivastava SR, Shrivastava PS, Ramasamy J. World Health Organization advocates for a healthy diet for all: Global perspective. J Res Med Sci. 2016;21:44. doi:10.4103/1735-1995.183994.

79. Raftery T, Martineau AR, Greiller CL, et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: Results from a randomised double-blind placebo-controlled study. United Eur Gastroenterol J. 2015;3:294-302. doi:10.1177/2050640615572176.

80. Eslamian G, Ardehali SH, Hajimohammadebrahim-Ketabforoush M, et al. Association of intestinal permeability with admission vitamin D deficiency in patients who are critically ill. J Investig Med. 2019;0:1-6. doi:10.1136/jim-2019-001132.

81. Phillips C, Fahimi A. Immune and Neuroprotective Effects of Physical Activity on the Brain in Depression. Front Neurosci. 2018;12:498. doi:10.3389/fnins.2018.00498.

82. Malkiewicz MA, Szarmach A, Sabisz A, et al. Blood-brain barrier permeability and physical exercise. J Neuroinflammation. 2019;16:15. doi:10.1186/s12974-019-1403-x.

83. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Sci Rep. 2016;6:35405. doi:10.1038/srep35405.

84. Пигарев И. Н., Пигарева М.Л. Прогресс в изучении сна в эпоху электрофизиологии. Висцеральная теория сна. Ж. невропатологии и психиатрии им. С.С. Корсакова. 2018;118:5-13. doi:10.17116/jnevro2018118425.

85. Tozawa K, Oshima T, Okugawa T, et al. A randomized, doubleblind, placebo-controlled study of rebamipide for gastric mucosal injury taking aspirin with or without clopidogrel. Dig Dis Sci. 2014;59:1885-90. doi:10.1007/s10620-014-3108-4.

86. Kim TJ, Kim ER, Hong SN, et al. Effectiveness of acid suppressants and other mucoprotective agents in reducing the risk of occult gastrointestinal bleeding in nonsteroidal anti-inflammatory drug users. Sci Rep. 2019;9:11696. doi:10.1038/s41598-019-48173-6.

87. Yasuda-Onozawa Y, Handa O, Naito Y, et al. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep. 2017;16:8216-22. doi:10.3892/mmr.2017.7647.

88. Lai Y, Zhong W, Yu T, et al. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of beta-Catenin. PLoS One. 2015;10:e0132031. doi:10.1371/journal.pone.0132031.

89. Diao L, Mei Q, Xu JM, et al. Rebamipide suppresses diclofenacinduced intestinal permeability via mitochondrial protection in mice. World J Gastroenterol. 2012;18:1059-66. doi:10.3748/wjg.v18.i10.1059.

90. Akagi S, Fujiwara T, Nishida M, et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapyinduced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis. J Pharm Health Care Sci. 2019;5:16. doi:10.1186/s40780-019-0146-2.


Для цитирования:


Каштанова Д.А., Ткачева О.Н. Феномен проницаемости кишечной стенки и его взаимосвязь с сердечно-сосудистыми заболеваниями. Современные представления о проблеме. Кардиоваскулярная терапия и профилактика. 2020;19(3):2474. https://doi.org/10.15829/1728-8800-2020-2474

For citation:


Kashtanova D.A., Tkacheva O.N. The phenomenon of intestinal permeability and its association with cardiovascular disease. Current status. Cardiovascular Therapy and Prevention. 2020;19(3):2474. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2474

Просмотров: 51


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)