Preview

Cardiovascular Therapy and Prevention

Advanced search

The phenomenon of intestinal permeability and its association with cardiovascular disease. Current status

https://doi.org/10.15829/1728-8800-2020-2474

Abstract

Changes in the intestinal permeability in various pathologies are widely discussed in the scientific community. There is still no consensus on whether high intestinal permeability can lead to chronic noncommunicable diseases, but there is much evidence that increased permeability can aggravate some of them. The article discusses a modern vision of the intestinal permeability including its potential contribution to the development of cardiovascular pathologies, which are the number one mortality cause both in Russia and around the world.

About the Authors

D. A. Kashtanova
Russian Clinical and Research Center of Gerontology, Pirogov Russian National Research Medical University
Russian Federation
Moscow


O. N. Tkacheva
Russian Clinical and Research Center of Gerontology, Pirogov Russian National Research Medical University
Russian Federation
Moscow


References

1. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809. doi:10.1038/nri2653.

2. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4:478-85. doi:10.1038/nri1373.

3. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231-41. doi:10.1038/nature11551.

4. Moreira AP, Texeira TF, Ferreira AB, et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108:801-9. doi:10.1017/S0007114512001213.

5. Drapkina OM, Korneeva ON. Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora. Ter Arkchiv. 2016;88:135-42. (In Russ.). doi:10.17116/terarkh2016889135-142.

6. Bulgakova SV, Treneva EV, Zakharova NO, et al. Intestinal microbiota: relationship to age-associated diseases (review of literature). Klin Lab Diagn. 2019;64:250-6. (In Russ.) doi:10.18821/0869-2084-2019-64-4-250-256.

7. Hui W, Li T, Liu W, et al. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: An updated randomized controlled trial meta-analysis. PLoS One. 2019;14:e0210016. doi:10.1371/journal.pone.0210016.

8. Quraishi MN, Widlak M, Bhala N, et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther. 2017;46:479-93. doi:10.1111/apt.14201.

9. Costello SP, Hughes PA, Waters O, et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA. 2019;321:156-64. doi:10.1001/jama.2018.20046.

10. Kootte RS, Levin E, Salojarvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26:611-9 e6. doi:10.1016/j.cmet.2017.09.008.

11. Cheng S, Ma X, Geng S, et al. Fecal Microbiota Transplantation Beneficially Regulates Intestinal Mucosal Autophagy and Alleviates Gut Barrier Injury. mSystems. 2018;3. doi:10.1128/mSystems.00137-18.

12. Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphiladerived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50:e450. doi:10.1038/emm.2017.282.

13. Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17:584-93. doi:10.1016/j.molmed.2011.05.011.

14. Capaldo CT, Powell DN, Kalman D. Layered defense: how mucus and tight junctions seal the intestinal barrier. J Mol Med (Berl). 2017;95:927-34. doi:10.1007/s00109-017-1557-x.

15. Dorofeyev AE, Vasilenko IV, Rassokhina OA, et al. Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol Res Pract. 2013;2013:431231. doi:10.1155/2013/431231.

16. Wenzel UA, Magnusson MK, Rydstrom A, et al. Spontaneous colitis in Muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS One. 2014;9:e100217. doi:10.1371/journal.pone.0100217.

17. Fu J, Wei B, Wen T, et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest. 2011;121:1657-66. doi:10.1172/JCI45538.

18. Rajilic-Stojanovic M, Shanahan F, Guarner F, et al. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013;19:481-8. doi:10.1097/MIB.0b013e31827fec6d.

19. Png CW, Linden SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420-8. doi:10.1038/ajg.2010.281.

20. Van Itallie CM, Tietgens AJ, Anderson JM. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell. 2017;28:524-34. doi:10.1091/mbc.E16-10-0698.

21. Beier LS, Rossa J, Woodhouse S, et al. Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. Int J Mol Sci. 2019;20. doi:10.3390/ijms20194774.

22. Ahmad R, Sorrell MF, Batra SK, et al. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol. 2017;10:307-17. doi:10.1038/mi.2016.128.

23. Takechi R, Lam V, Brook E, et al. Blood-Brain Barrier Dysfunction Precedes Cognitive Decline and Neurodegeneration in Diabetic Insulin Resistant Mouse Model: An Implication for Causal Link. Front Aging Neurosci. 2017;9:399. doi:10.3389/fnagi.2017.00399.

24. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667-85. doi:10.1038/nri3738.

25. Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol. 2019;10:1873. doi:10.3389/fimmu.2019.01873.

26. Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017;17:761-73. doi:10.1038/nri.2017.100.

27. Spadoni I, Pietrelli A, Pesole G, et al. Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes. 2016;7:540-8. doi:10.1080/19490976.2016.1239681.

28. Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350:830-4. doi:10.1126/science.aad0135.

29. Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol. 2017;312:G413-9. doi:10.1152/ajpgi.00361.2016.

30. Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT, et al. Hepatocyte Toll-Like Receptor 5 Promotes Bacterial Clearance and Protects Mice Against High-Fat Diet-Induced Liver Disease. Cell Mol Gastroenterol Hepatol. 2016;2:584-604. doi:10.1016/j.jcmgh.2016.04.007.

31. Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol. 2018;68-69:452-62. doi:10.1016/j.matbio.2017.11.011.

32. Wree A, Broderick L, Canbay A, et al. From NAFLD to NASH to cirrhosisnew insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10:627-36. doi:10.1038/nrgastro.2013.149.

33. Ponziani FR, Zocco MA, Cerrito L, et al. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol. 2018;12:641-56. doi:10.1080/17474124.2018.1481747.

34. Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46:556- 60. doi:10.1016/j.dld.2014.02.010.

35. Leung C, Rivera L, Furness JB, et al. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13:412-25. doi:10.1038/nrgastro.2016.85.

36. Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol. 2015;7:425-42. doi:10.4254/wjh.v7.i3.425.

37. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60:197-209. doi:10.1016/j.jhep.2013.07.044.

38. Chen Y, Guo J, Shi D, et al. Ascitic Bacterial Composition Is Associated With Clinical Outcomes in Cirrhotic Patients With Culture-Negative and Non-neutrocytic Ascites. Front Cell Infect Microbiol. 2018;8:420. doi:10.3389/fcimb.2018.00420.

39. Huang LT, Hung JF, Chen CC, et al. Endotoxemia exacerbates kidney injury and increases asymmetric dimethylarginine in young bile duct-ligated rats. Shock. 2012;37:441-8. doi:10.1097/SHK.0b013e318244b787.

40. Wijdicks EF. Hepatic Encephalopathy. N Engl J Med. 2016;375:1660-70. doi:10.1056/NEJMra1600561.

41. Violi F, Lip GY, Cangemi R. Endotoxemia as a trigger of thrombosis in cirrhosis. Haematologica. 2016;101:e162-3. doi:10.3324/haematol.2015.139972.

42. Sainsbury A, Sanders DS, Ford AC. Meta-analysis: Coeliac disease and hypertransaminasaemia. Aliment Pharmacol Ther. 2011;34:33-40. doi:10.1111/j.1365-2036.2011.04685.x.

43. Wang L, Llorente C, Hartmann P, et al. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods. 2015;421:44-53. doi:10.1016/j.jim.2014.12.015.

44. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258:25-33. doi:10.1111/j.1749-6632.2012.06538.x.

45. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140:900-17. doi:10.1016/j.cell.2010.02.034.

46. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207-15. doi:10.1016/S2213-8587(14)70134-2.

47. Piya MK, Harte AL, McTernan PG. Metabolic endotoxaemia: is it more than just a gut feeling? Curr Opin Lipidol. 2013;24:78-85. doi:10.1097/MOL.0b013e32835b4431.

48. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179-85. doi:10.1038/nature10809.

49. Kallio KA, Hatonen KA, Lehto M, et al. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 2015;52:395-404. doi:10.1007/s00592-014-0662-3.

50. Wilms E, Troost FJ, Elizalde M, et al. Intestinal barrier function is maintained with aging — a comprehensive study in healthy subjects and irritable bowel syndrome patients. Sci Rep. 2020;10:475. doi:10.1038/s41598-019-57106-2.

51. Sumida K, Molnar MZ, Potukuchi PK, et al. Constipation and risk of death and cardiovascular events. Atherosclerosis. 2019;281:114- 20. doi:10.1016/j.atherosclerosis.2018.12.021.

52. Sket R, Treichel N, Debevec T, et al. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study. Front Physiol. 2017;8:250. doi:10.3389/fphys.2017.00250.

53. Rungoe C, Basit S, Ranthe MF, et al. Risk of ischaemic heart disease in patients with inflammatory bowel disease: a nationwide Danish cohort study. Gut. 2013;62:689-94. doi:10.1136/gutjnl-2012-303285.

54. Kim S, Goel R, Kumar A, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132:701-18. doi:10.1042/CS20180087.

55. Rogler G, Rosano G. The heart and the gut. Eur Heart J. 2014;35:426-30. doi:10.1093/eurheartj/eht271.

56. Sandek A, Bjarnason I, Volk HD, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. International journal of cardiology. 2012;157:80-5. doi:10.1016/j.ijcard.2010.12.016.

57. Jin M, Qian Z, Yin J, et al. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med. 2019;23:2343-50. doi:10.1111/jcmm.14195.

58. Bielinska K, Radkowski M, Grochowska M, et al. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutrition. 2018;54:33-9. doi:10.1016/j.nut.2018.03.004.

59. Jaworska K, Huc T, Samborowska E, et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One. 2017;12:e0189310. doi:10.1371/journal.pone.0189310.

60. Janeiro MH, Ramirez MJ, Milagro FI, et al. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. doi:10.3390/nu10101398.

61. Heianza Y, Ma W, Manson JE, et al. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J Am Heart Assoc. 2017;6(7):e004947. doi:10.1161/JAHA.116.004947.

62. Widmer RJ, Flammer AJ, Lerman LO, et al. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128:229-38. doi:10.1016/j.amjmed.2014.10.014.

63. Gibson R, Lau CE, Loo RL, et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am J Clin Nutr. 2020;111(4):919. doi:10.1093/ajcn/nqz293.

64. Jaworska K, Hering D, Mosieniak G, et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins (Basel). 2019;11(9):490. doi:10.3390/toxins11090490.

65. Kashtanova DA, Tkacheva ON, Doudinskaya EN, et al. Gut Microbiota in Patients with Different Metabolic Statuses: Moscow Study. Microorganisms. 2018;6(4):98. doi:10.3390/microorganisms6040098.

66. Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4592-8. doi:10.1073/pnas.1011383107.

67. Armingohar Z, Jorgensen JJ, Kristoffersen AK, et al. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol. 2014;6:10. doi:10.3402/jom.v6.23408.

68. Wang J, Si Y, Wu C, et al. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-kappaB pathway. Lipids Health Dis. 2012;11:139. doi:10.1186/1476-511X-11-139.

69. Carnevale R, Nocella C, Petrozza V, et al. Localization of lipopolysaccharide from Escherichia Coli into human atherosclerotic plaque. Sci Rep. 2018;8:3598. doi:10.1038/s41598-018-22076-4.

70. Li J, Lin S, Vanhoutte PM, et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice. Circulation. 2016;133:2434-46. doi:10.1161/CIRCULATIONAHA.115.019645.

71. Laffin M, Fedorak R, Zalasky A, et al. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal shortchain fatty acids in mice. Sci Rep. 2019;9:12294. doi:10.1038/s41598-019-48749-2.

72. Hamilton MK, Boudry G, Lemay DG, et al. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015;308:G840-51. doi:10.1152/ajpgi.00029.2015.

73. Araujo JR, Tomas J, Brenner C, et al. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie. 2017;141:97-106. doi:10.1016/j.biochi.2017.05.019.

74. Shi C, Li H, Qu X, et al. High fat diet exacerbates intestinal barrier dysfunction and changes gut microbiota in intestinal-specific ACF7 knockout mice. Biomed Pharmacother. 2019;110:537-45. doi:10.1016/j.biopha.2018.11.100.

75. Holota Y, Dovbynchuk T, Kaji I, et al. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One. 2019;14:e0220642. doi:10.1371/journal.pone.0220642.

76. Chambers ES, Preston T, Frost G, et al. Role of Gut MicrobiotaGenerated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018;7:198-206. doi:10.1007/s13668-018-0248-8.

77. Quagliani D, Felt-Gunderson P. Closing America’s Fiber Intake Gap: Communication Strategies From a Food and Fiber Summit. Am J Lifestyle Med. 2017;11:80-5. doi:10.1177/1559827615588079.

78. Shrivastava SR, Shrivastava PS, Ramasamy J. World Health Organization advocates for a healthy diet for all: Global perspective. J Res Med Sci. 2016;21:44. doi:10.4103/1735-1995.183994.

79. Raftery T, Martineau AR, Greiller CL, et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: Results from a randomised double-blind placebo-controlled study. United Eur Gastroenterol J. 2015;3:294-302. doi:10.1177/2050640615572176.

80. Eslamian G, Ardehali SH, Hajimohammadebrahim-Ketabforoush M, et al. Association of intestinal permeability with admission vitamin D deficiency in patients who are critically ill. J Investig Med. 2019;0:1-6. doi:10.1136/jim-2019-001132.

81. Phillips C, Fahimi A. Immune and Neuroprotective Effects of Physical Activity on the Brain in Depression. Front Neurosci. 2018;12:498. doi:10.3389/fnins.2018.00498.

82. Malkiewicz MA, Szarmach A, Sabisz A, et al. Blood-brain barrier permeability and physical exercise. J Neuroinflammation. 2019;16:15. doi:10.1186/s12974-019-1403-x.

83. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Sci Rep. 2016;6:35405. doi:10.1038/srep35405.

84. Pigarev IN, Pigareva ML. Progress of sleep studies in the age of electrophysiology. The visceral theory of sleep. Zh Nevrol Psikhiatr Im S S Korsakova. 2018;118:5-13. (In Russ.) doi:10.17116/jnevro2018118425.

85. Tozawa K, Oshima T, Okugawa T, et al. A randomized, doubleblind, placebo-controlled study of rebamipide for gastric mucosal injury taking aspirin with or without clopidogrel. Dig Dis Sci. 2014;59:1885-90. doi:10.1007/s10620-014-3108-4.

86. Kim TJ, Kim ER, Hong SN, et al. Effectiveness of acid suppressants and other mucoprotective agents in reducing the risk of occult gastrointestinal bleeding in nonsteroidal anti-inflammatory drug users. Sci Rep. 2019;9:11696. doi:10.1038/s41598-019-48173-6.

87. Yasuda-Onozawa Y, Handa O, Naito Y, et al. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep. 2017;16:8216-22. doi:10.3892/mmr.2017.7647.

88. Lai Y, Zhong W, Yu T, et al. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of beta-Catenin. PLoS One. 2015;10:e0132031. doi:10.1371/journal.pone.0132031.

89. Diao L, Mei Q, Xu JM, et al. Rebamipide suppresses diclofenacinduced intestinal permeability via mitochondrial protection in mice. World J Gastroenterol. 2012;18:1059-66. doi:10.3748/wjg.v18.i10.1059.

90. Akagi S, Fujiwara T, Nishida M, et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapyinduced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis. J Pharm Health Care Sci. 2019;5:16. doi:10.1186/s40780-019-0146-2.


Review

For citations:


Kashtanova D.A., Tkacheva O.N. The phenomenon of intestinal permeability and its association with cardiovascular disease. Current status. Cardiovascular Therapy and Prevention. 2020;19(3):2474. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2474

Views: 1044


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)