Preview

Cardiovascular Therapy and Prevention

Advanced search

Phenotypes of early and favorable vascular aging in young people depending on the risk factors and presence of connective tissue dysplasia

https://doi.org/10.15829/1728-8800-2020-2524

Abstract

Aim. To study the main risk factors and signs of connective tissue dysplasia (CTD) in young people according  to quartile analysis of cardioankle vascular index (CAVI).

Material and methods. The study involved 243 young people (men, 81; women, 162) aged 18-25 years. All subjects were divided into quartile groups  depending  on CAVI on both sides,  or CAVI-R and CAVI-L, determined  using the VaSera-1500 system (Fucuda Denshia,Japan). According to the latest guidelines, the 4th  quartile of this distribution among persons  of the same sex and age corresponds to early vascular aging (EVA) syndrome.  The 1st  quartile corresponds to favorable vascular aging. We analyzed the main RFs and CTD signs in each  of the 4 CAVI quartiles. Data processing  was carried out using the Statistica 10.0 software package (StatSoft Inc,USA).

Results. The minimum and maximum CAVI in the sample were 3,2 and 7,9. The overwhelming majority of studied risk factors in both sexes were not associated with the stiffness. Only body mass and body mass index increasedwith a decrease in vascular stiffness and vice versa. The average number of external stigmas of dysembryogenesis in young people increased from the 1st  to the 4th  CAVI quartile, with significant differences in the extreme groups. Such CTD signs as a carpal tunnel syndrome and thumb sign also significantly differed between the 1st  and 4th quartiles.

Conclusion. The presented results can be used for prevention among young people to form more individualized programs taking into account a comprehensive assessment of vascular aging phenotype and the level of external stigmatization of each young person.

About the Authors

M. E. Evseveva
Stavropol State Medical University
Russian Federation
Stavropol


M. V. Eremin
Regional Clinical Hospital of the Stavropol Krai
Russian Federation
Stavropol


M. V. Rostovtseva
Stavropol State Medical University
Russian Federation
Stavropol


O. V. Sergeeva
Stavropol State Medical University
Russian Federation
Stavropol


E. N. Fursova
Stavropol State Medical University
Russian Federation
Stavropol


V. A. Rusidi
Stavropol State Medical University
Russian Federation
Stavropol


I. Yu. Galkova
Stavropol State Medical University
Russian Federation
Stavropol


V. D. Kudryavtseva
Stavropol State Medical University
Russian Federation
Stavropol


References

1. Burko NV, Avdeeva IV, Oleynikov VE, et al. The Concept of Early Vascular Aging. Rational Pharmacotherapy in Cardiology. 2019;15(5):742-9. (In Russ.) doi:10.20996/1819-6446-2019-15-5-742-749.

2. Milyagin VA, Milyagina IV, Abramenkova NYu, et al. Noninvasive methods of investigation of the main vessels. Monograph. Smolensk. 2012. p.224. (In Russ.) ISBN 978-5-94223-751-6.

3. Rotar OP, Alieva AS, Boiarinova MA, et al. Vascular Age Concept: Which Approach Is Preferable in Clinical Practice? Kardiologiia. 2019;59(2):45-53. (In Russ.) doi:10.18087/cardio.2019.2.10229.

4. Nilsson PM. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular preven tion. J Hypertens. 2013;31(8):1517-26. doi:10.1097/HJH.0b013e328361e4bd.

5. Nilsson P. Early vascular ageing — a concept in development. Eur Endocrinol. 2015;11(1):26-31. doi:10.17925/EE.2015.11.01.26.

6. Cunha PG, Cotter J, Oliveira P, et al. Pulse wave velocity distribution in a cohort study: from arterial stiffness to early vascular aging. J Hypertens. 2015;33(7):1438-45. doi:10.1097/HJH.0000000000000565.

7. Laurent S, Boutouyrie P, Cunha P, et al. Concept of Extremes in Vascular Aging From Early Vascular Aging to Supernormal Vascular Aging. Hypertension. 2019;74:218-28. doi:10.1161/HYPERTENSIONAHA.119.12655.

8. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant metaanalysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636-46. doi:10.1016/j.jacc.2013.09.063.

9. Botto F, Obregon S, Rubinstein F, et al. Frequency of early vascular aging and associated risk factors among an adult population in Latin America: the OPTIMO study. J Human Hypertens. 2018;32(3):219-27. doi:10.1038/s41371-018-0038-1.

10. Nilsson P. Adiposity and Vascular Aging: Indication for Weight Loss? Hypertension. 2015;66(2):270-2. doi:10.1161/HYPERTENSIONAHA.115.05621.

11. Phillips R, Alpert B, Schwingshackl А, et al. Inverse Relationship between Cardio-Ankle Vascular Index and Body Mass Index in Healthy Children. J Pediatr. 2015;167(2):361-65.e1. doi:10.1016/j.jpeds.2015.04.042.

12. Undifferentiated connective tissue dysplasia (project of clinical guidelines of RSMST). Therapy. 2019;33(7): 9-42. (In Russ.) doi:10.18565/therapy.2019.7.9-42.

13. Hereditary connective tissue disorders in cardiology. Diagnosis and treatment. Russian recommendations (I revision). Russian Journal of Cardiology. 2013;18(1):1-32. (In Russ.)

14. Gielen S, Backer G. De, Piepoli M, et al. The ESC Textbook of Preventive Cardiology. Oxford University Press. 2016. p.616. ISBN: 9780198795049.

15. Evsevyeva ME, Eremin MV, Koshel VI. Heredity connective tissue diseases and student’s medical examination: aspects of screening diagnosis. Medical news of the north Caucasus. 2016;11(2-2):351-3. (In Russ.) doi:10.14300/mnnc.2016.11075.

16. Evsevyeva M. E., Miridzhanyan E. M., Babunts I. V., Pervushin Yu. V. Blood lipid profile and cardiovascular disease in family history among young people with various health status. Cardiovascular Therapy and Prevention. 2005;4(6, ч.II):77-81. (In Russ.)

17. Sumin AN, Osokina AV, Shcheglova AV, et al. EchoCG data in IHD patients with different cardio-ankle vascular indexes. Russian Heart Journal. 2015;14(3):123-30. (In Russ.)

18. Strazhesko ID, Tkacheva ON, Akasheva DU, et al. Correlations of different structural and functional characteristics of arterial wall with traditional cardiovascular risk factors in healthy people of different age. Part 2. Rational Pharmacotherapy in Cardiology. 2016;12(3):244-52. (In Russ.) doi:10.20996/1819-6446-2016-12-3-244-252.

19. Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is superior to brachialankle pulse wave velocity as an index of arterial stiffness. Hypertens Res. 2008;31(7):1347-55. doi:10.1291/hypres.31.1347.

20. Dangardt F, Osika W, Volkmann R, et al. Obese children show increased intimal wall thickness and decreased pulse wave velocity. Clin Physiol Funct Imaging. 2008;28:287-93. doi:10.1111/j.1475-097X.2008.00806.x.

21. Lurbe E, Torro I, Garcia-Vicent C, et al. Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension. 2012;60:550-5. Hypertension. 2012;60(2):550-5. doi:10.1161/HYPERTENSIONAHA.112.194746.

22. Seres L, Lopez-Ayerbe J, Coll R, et al. Cardiopulmonary function and exercise capacity in patients with morbid obesity. Rev Esp Cardiol. 2003;56:594-600. doi:10.1016/s0300-8932(03)76921-8.

23. Meerson FZ. Pathogenesis and prevention of stress and ischemic heart injuries. Moscow: Medicine, 1984. 272c. Il. BBK: 54.101. (In Russ.) .

24. .Corden B, Keenan NG, de Marvao AS, et al. Body fat is associated with reduced aortic stiffness until middle age. Hypertension. 2013;61(6):1322-7. doi:10.1161/HYPERTENSIONAHA.113.01177.

25. Charakida M, Jones A, Falaschetti E, et al. Childhood obesity and vascular phenotypes: a population study. J Am Coll Cardiol. 2012;60(25):2643-50. doi:10.1016/j.jacc.2012.08.1017.

26. Semenkin AA, Drokina OV, Nechaeva GI, et al. Undifferentiated congenital connective tissue disorders as an independent predictor of structural and functional arterial changes. Cardiovascular Therapy and Prevention. 2013;12(3):29-34. (In Russ.) doi:10.15829/1728-8800-2013-3-29-34.

27. Semyonkin AA, Nechaeva GI, Drokina OV, et al. Age-related aspects of structural and functional changes in arteries in individuals with connective tissue dysplasia. Archive of internal medicine. 2013;(3):46-50. (In Russ.) С doi:10.20514/2226-6704-2013-0-3-46-50.

28. Brull DJ, Murray LJ, Boreham CA, et al. Effect of a COL1A1 Sp1 binding site polymorphism on arterial pulse wave velocity: an index of compliance. Hypertension. 2001;38(3):444-8. doi:10.1161/01.hyp.38.3.444.

29. Mangino M, Cecelja M, Menni C, et al. Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity. J Hypertens. 2016;34(1):79-87. doi:10.1097/HJH.0000000000000732.

30. Hanon O, Luong V, Mourad JJ, et al. Aging, carotid artery distensibility, and the Ser422Gly elastin gene polymorphism in humans. Hypertension. 2001;38(5):1185-9. doi:10.1161/hy1101.096802.

31. Ye S. Influence of matrix metalloproteinase genotype on cardiovascular disease susceptibility and outcome. Cardiovasc Res. 2006;15;69(3):636-45. doi:10.1016/j.cardiores.2005.07.015.

32. Evsevуeva ME, Koshel VI, Eremin MV, et al. Screening of students’ health resources and the formation of an intra-University preventive environment: clinical, educational, and educational-pedagogical aspects. Medical Bulletin of the North Caucasus. 2015;10(1):64-9. (In Russ.)


Supplementary files

Review

For citations:


Evseveva M.E., Eremin M.V., Rostovtseva M.V., Sergeeva O.V., Fursova E.N., Rusidi V.A., Galkova I.Yu., Kudryavtseva V.D. Phenotypes of early and favorable vascular aging in young people depending on the risk factors and presence of connective tissue dysplasia. Cardiovascular Therapy and Prevention. 2020;19(6):2524. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2524

Views: 776


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)