Валидные кардиоспецифические биохимические маркеры. Часть I
https://doi.org/10.15829/1728-8800-2020-2573
Аннотация
Биомаркеры находят широкое применение в диагностике заболеваний, оценке их выраженности и определении прогноза по исходам, а также используются при выборе оптимальной терапии, мониторинге ее эффективности и безопасности. Настоящий обзор посвящен описанию кардиоспецифических биомаркеров, одобренных FDA (Food and Drug Administration), США, что гарантирует целесообразность их применения. Перечень анализируемых маркеров не является исчерпывающим ни с точки зрения списка валидных маркеров, одобренных FDA, ни с точки зрения их охвата в Рекомендациях по лечению различных сердечно-сосудистых заболеваний. Помимо изложения общих понятий о биомаркерах, определений и классификации в настоящей (первой) части обзора приведены данные о диагностических и прогностических биомаркерах сердечно-сосудистых заболеваний, связанных с атеросклерозом.
Об авторах
В. А. МетельскаяРоссия
Виктория Алексеевна Метельская - доктор биологических наук, профессор, главный научный сотрудник, руководитель Отдела изучения биохимических маркеров риска хроничесских неинфекционных заболеваний
Москва
Н. Г. Гуманова
Россия
Надежда Георгиевна Гуманова - кандидат биологических наук, ведущий научный сотрудник отдела изучения биохимических маркеров риска хроничесских неинфекционных заболеваний
Москва
Список литературы
1. Vasan RS. Biomarkers of Cardiovascular Disease. Molecular Basis and Practical Considerations. Circulation. 2006;113(19):2335-62. https://doi.org/10.1161/CIRCULATIONAHA.104.482570
2. Аничков Д.А., Шостак Н.А. Новые маркеры сердечно-сосудистого риска: от исследований к клиническим рекомендациям. Клиницист. 2014;8(1):4-8. https://doi.org/10.17650/1818-8338-2014-1-4-8
3. Гуманова Н.Г. Аналитический комплекс биохимических маркеров для доклинической диагностики и профилактики сердечно-сосудистых заболеваний. Кардиоваскулярная терапия и профилактика. 2019;18(5):117-27. https://doi.org/10.15829/1728-8800-2019-5-117-127
4. Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. Биомаркеры в медицине: поиск, выбор, изучение и валидация. Клин лабор диагн. 2017;62(1):52-9. https://doi.org/10.18821/0869-2084-2017-62-1-52-59
5. Магрук М.А., Мосикян А., Бабенко А.Ю. Биомаркеры, ассоциированные с атерогенезом: актуальный статус и перспективные направления. Российский кардиологический журнал. 2019;24(12):148-52. https://doi.org/10.15829/1560-4071-2019-12-148-152
6. Biomarkers Definitions Working Group. Biomarkers and surrogate end points: preferred definitions and conceptual frame work. Clin Pharmacol Ther 2001;69:89-95. https://doi.org/10.1067/mcp.2001.113989
7. Biomarkers, Endpoints, and other Tools Resource (BEST) https://www. ncbi.nlm.nih.gov/books/NBK326791
8. CDER Biomarker Qualification Program. https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/cder-biomarker-qualification-program
9. Heinonen TM, Aamer M, Marshall C, et al. Cardiovascular biomarkers and surrogate end points: key initiatives and clinical trial challenges. Expert Rev Cardiovasc Ther. 2012; 10(8):989-94. https://doi.org/10.1586/erc.12.84
10. Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk. A Scientific Statement from the AHA. Circulation. 2009;119:2408-16. https://doi.org/doi.org/10.1161/CIRCULATIONAHA.109.192278
11. Wang TJ. Assessing the Role of Circulating, Genetic, and Imaging Biomarkers in Cardiovascular Risk Prediction. Circulation. 2011;123:551-65. https://doi.org/10.1161/CIRCULATIONAHA.109.912568.
12. Pencina MJ, D'Agostino RB, D'Agostino RB Jr, et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157-72. https://doi.org/10.1002/sim.2929.
13. Cook NR. Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction. Circulation. 2007;115:928-35. https://doi.org/10.1161/CIRCULATIONAHA.106.672402
14. Liu J, Hong Y, D’Agostino RB Sr, et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-provincial Cohort Study. JAMA. 2004;291:2591-9. https://doi.org/10.1001/jama.291.21.2591.
15. Moons KG, de Groot JA, Linnet K, et al. Quantifying the added value of a diagnostic test or marker. Clin Chem. 2012; 58:1408-17. https://doi.org/10.1373/clinchem.2012.182550.
16. Niiranen TJ, Vasan RS. Epidemiology of cardiovascular disease: recent novel outlooks on risk factors and clinical approaches. Expert Rev Cardiovasc Ther. 2016; 14 (7): 855-69. https://doi.org/10.1080/14779072.2016.1176528
17. Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Transl Med. 2016;4(10):194. https://doi.org/10.21037/atm.2016.05.19
18. Penttilä I, Penttilä K, Rantanen T. Laboratory diagnosis of patients with acute chest pain. Clin Chem Lab Med. 2000;38:187-97. https://doi.org/10.1515/CCLM.2000.027
19. Jialal I, Sokoll LJ. Am J Clin Pathol. Clinical Utility of Lactate Dehydrogenase in Determining the Severity of Hemolysis in Sickle Cell Anemia. 2015;143(2):158-9. https://doi.org/10.1309/AJCTP0FC8QFYDFA.
20. Lewandrowski KB. Cardiac markers of myocardial necrosis: a history and discussion of milestones and emerging new trends. Clin Lab Med. 2014;34(1):31-41,xi. https://doi.org/10.1016/j.cll.2013.11.001.
21. Pöyhönen P, Kylmälä M, Vesterinen P, et al. Peak CK-MB has a strong association with chronic scar size and wall motion abnormalities after revascularized non-transmural myocardial infarction - a prospective CMR study. BMC Cardiovasc Disord. 2018; 8:18(1):27. https://doi.org/10.1186/s12872-018-0767-7
22. Hendgen-Cotta U, Kelm M, Rassaf T. Myoglobin functions in the heart. Free Radic Biol Med. 2014;73:252-9. https://doi.org/10.1016/j.freeradbiomed.2014.05.005.
23. Recognized Consensus Standards https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/detail.cfm?standard_identification_no=11555
24. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomized trials. Lancet. 2010;376:1670-81. https://doi.org/10.1016/S0140-6736(10)61350-5
25. Holmes MV, Asselbergs FW, Palmer TM, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539-50. https://doi.org/10.1093/eurheartj/eht571
26. Frikke-Schmidt R. HDL cholesterol and apolipoprotein A-I concentrations and risk of atherosclerotic cardiovascular disease: Human genetics to unravel causality. Atherosclerosis.2020;299:53-5. https://doi.org/10.1016/j.atherosclerosis.2020.02.002
27. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626-35. https://doi.org/10.1016/S0140-6736(14)61177-6
28. Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010;56(2):177-85. https://doi.org/10.1373/clinchem.2009.126706
29. The Emerging Risk Factors Collaboration. Major lipids, apolipoproteins and risk of vascular disease. JAMA. 2009; 302(18):1993-2000 https://doi.org/10.1001/jama.2009.1619
30. Eckel RH, Cornier M. Update on the NCEP ATP-III emerging cardiometabolic risk factors. BMC Med. 2014;12:115. https://doi.org/10.1186/1741-7015-12-115
31. Di Angelantonio E, Gao P, Pennells L, et al. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012;307:2499-2506. https://doi.org/10.1001/jama.2012.6571
32. Ежов М.В., Сергиенко И.В., Аронов Д.М. и др. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации VI пересмотр. Атеросклероз и дислипидемии. 2017;3:5-22. https://doi.org/10.15829/1560-4071-2019-9-44-51
33. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur Heart J. 2020;41(1):111-88. https://doi.org/10.1093/eurheartj/ehz455.
34. Boffa MB, Marcovina SM, Koschinsky ML. Lipoprotein(a) as a risk factor for atherosclerosis and thrombosis: mechanistic insights from animal models. Clin Biochem. 2004;37(5):333-43. https://doi.org/10.1016/j.clinbiochem.2003.12.007
35. Stefanutti C, Morozzi C. HyperLp(a)lipoproteinaemia: unmet need of diagnosis and treatment? Blood Transfus 2016;14:408-12. https://doi.org/10.2450/2016.0027-16
36. Bennet A, Di Angelantonio E, Erqou S, et al. Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective data. Arch Intern Med. 2008;168(6):598-608. https://doi.org/10.1001/archinte.168.6.598
37. Nordestgaard BG, Chapman MJ, Ray K, et al. EAS Consensus Panel. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844-53. https://doi.org/10.1093/eurheartj/ehq386
38. Erqou S, Kaptoge S, Perry PL, et al. Lipoprotein(a) Concentration and the Risk of Coronary Heart Disease, Stroke, and Nonvascular Mortality. JAMA. 2009;302(4):412-23. https://doi.org/10.1001/jama.2009.1063
39. Tsimikas S, Stroes ES. The dedicated «Lp(a) clinic»: a concept whose time has arrived? Atherosclerosis. 2020;300:1-9. https://doi.org/10.1016/j.atherosclerosis.2020.03.003
40. O'Riordan M. FDA Approves Lp-PLA2 Test for Patients without Existing Coronary Disease. https://www.medscape.com/viewarticle/836640
41. Stefano A, Liliana M, Federica T, et al. Lp-PLA2, a new biomarker of vascular disorders in metabolic diseases Int J Immunopathol Pharmacol. 2019;33:2058738419827154. https://doi.org/10.1177/2058738419827154
42. Stafforini DM. Plasma PAF-AH (PLA2G7): Biochemical properties, association with LDLs and HDLs, and regulation of expression. The Enzymes. 2015;38:71-93. https://doi.org/10.1016/bs.enz.2015.09.004.
43. Thompson A, Gao P, Orfei L, et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375(9725):1536-44. https://doi.org/10.1016/S0140-6736(10)60319-4
44. Packard CJ, O'Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med. 2000;19:343(16):1148-55. https://doi.org/10.1056/NEJM200010193431603
45. Li D, Zhao L, Yu J, et al. Lipoprotein-associated phospholipase A2 in coronary heart disease: Review and meta-analysis Clin Chim Acta. 2017;465:22-9. https://doi.org/10.1016/j.cca.2016.12.006
46. Wallentin L, Held C, Armstrong PW, et al. Lipoprotein-Associated Phospholipase A2 Activity Is a Marker of Risk But Not a Useful Target for Treatment in Patients With Stable Coronary Heart Disease. J Am Heart Assoc. 2016;5(6):e003407 https://doi.org/10.1161/JAHA.116.003407.
47. Kaptoge S, Di Angelantonio E, Lowe G, et al. Emerging Risk Factors Collaboration C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132-40. https://doi.org/10.1016/S0140-6736(09)61717-7
48. Rudolf J, Lewandrowski KB. Cholesterol, lipoproteins, high-sensitivity С-reactive protein, and other risk factors for atherosclerosis Clin Lab Med. 2014;34:113-27. https://doi.org/10.1016/j.cll.2013.11.003
49. Review Criteria for Assessment of C Reactive Protein (CRP), High Sensitivity C-Reactive Protein (hsCRP) and Cardiac C-Reactive Protein (cCRP) Assay. 2005. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/review-criteria-assessment-c-reactive-protein-crp-high-sensitivity-c-reactive-protein-hscrp-and-0
50. Rifai N, Ballantyne C, Cushman M, et al. Point: High-Sensitivity C-Reactive Proteinand Cardiac C-Reactive Protein Assays: Is There a Need to Differentiate? Clinical Chemistry. 2006;52(7):1254-6. https://doi.org/10.1373/clinchem.2006.070904.
51. Yousuf O, Mohanty BD, Martin SS, et al. High-sensitivity C-reactive protein and cardiovascular disease. J Am Coll Cardiol, 2013; 62:397-408. https://doi.org/10.1016/j.jacc.2013.05.016
52. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003; 28;107(3):499-511. https://doi.org/10.1161/01.cir.0000052939.59093.45
53. Executive Summary for Plasma Fibrinogen. https://www.fda.gov/media/92567
54. Forsyth CB, Solovjov DA, Ugarova TP, Plow EF. Integrin αMβ2-Mediated Cell Migration to Fibrinogen and Its Recognition Peptides. J Exp Med. 2001;193(10):1123-34. https://doi.org/10.1084/jem.193.10.1123
55. Tousoulis D, Papageorgio N. Fibrinogen and cardiovascular disease: Genetics and biomarkers. Blood Rev. 2011;25(6) 239-45. https://doi.org/10.1016/j.blre.2011.05.001
56. Rizzo M, Corrado E, Coppola G, et al. Markers of inflammation are strong predictors of subclinical and clinical atherosclerosis in women with hypertension. Coron Artery Dis. 2009; 20:15-20. https://doi.org/10.1097/MCA.0b013e3283109065
57. Danesh J, Lewington S, Thompson SG, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294:1799-1809. https://doi.org/10.1001/jama.294.14.1799
58. Rønnow SR, Sand JMB, Langholm LL. Type IV collagen turnover is predictive of mortality in COPD: a comparison to fibrinogen in a prospective analysis of the ECLIPSE cohort. Respir Res. 2019; 20:63. https://doi.org/10.1186/s12931-019-1026-x
59. Miller BE, Tal-Singer R, Rennard SI, et al. Plasma Fibrinogen Qualification as a Drug Development Tool in Chronic Obstructive Pulmonary Disease. Perspective of the Chronic Obstructive Pulmonary Disease Biomarker Qualification Consortium. Am J Respir Crit Care Med. 2016;193(6):607-13. https://doi.org/10.1164/rccm.201509-1722PP
60. Danesh J, Collins R, Appleby P, et al. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: metaanalyses of prospective studies. JAMA. 1998;279:1477-82. https://doi.org/10.1155/2020/8743548
61. Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med. 1993;118:956-63. https://doi.org/10.7326/0003-4819-118-12-199306150-00008
62. Moncada S, Palmer RMJ, Higgs A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev.1991;43:109-42.
63. Метельская В.А., Гуманова Н.Г. Скрининг-метод определения уровня метаболитов оксида азота в сыворотке крови человека. Клин. лаб. диагн., 2005; №6:15-8.
64. Гуманова Н.Г., Климушина М.В., Метельская В.А. Оптимизация метода одноэтапного определения циркулирующих нитрит- и нитрат-ионов (NOx) как фактора риска сердечно-сосудистой смерти. Бюлл. Эксперим. Биол. Мед. 2018;165(2):284-7). https://doi.org/10.1007/s10517-018-4149-z
65. Gumanova NG, Deev AD, Zhang W, et al. Serum nitrite and nitrate levels, NOx, can predict cardiovascular mortality in the elderly in a 3-year follow-up study. Biofactors. 2017;2;43(1):82-9. https://doi.org/10.1002/biof.1321
66. Gumanova NG, Deev AD, Kots AY, et al. Elevated levels of serum nitrite and nitrate, NOx, are associated with increased total and cardiovascular mortality in an 8-year follow-up study. Eur J Clin Invest. 2019;49(3):e13061. https://doi.org/10.1111/eci.13061
67. Maas R, Xanthakis V, Göen T, et al. Plasma Nitrate and Incidence of Cardiovascular Disease and All-Cause Mortality in the Community: The Framingham Offspring Study. J Am Heart Assoc. 2017;18:6(11):e006224. https://doi.org/10.1161/JAHA.117.004222
68. Gumanova NG, Klimushina MV, Smetnev SA, et al. Levels of nitric oxide metabolites, adiponectin and endothelin are associated with SNPs of the adiponectin and endothelin genes. Biomed Rep. 2019;11(4):154-64. https://doi.org/10.3892/br.2019.1238
69. Hayashi T, Nomura H, Osawa M, et al. Nitric oxide metabolites are associated with survival in older patients. J Am Geriatr Soc. 2007;55(9):1398-403. https://doi.org/10.1111/j.1532-5415.2007.01296.x.
70. Gumanova NG, Deev AD, Klimushina MV, et al., Serum nitrate and nitrite are associated with the prevalence of various chronic diseases except cancer. Int Angiol. 2017;36(2):160-6. https://doi.org/10.23736/S0392-9590.16.03674-9
71. Zethelius B, Berglund L, Sundstrom J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 2008;358:2107-16. https://doi.org/10.1056/NEJMoa0707064
72. Koenig W. Integrating biomarkers: the new frontier? Scand J Clin Lab Invest Suppl. 2010;242:117-23. https://doi.org/10.3109/00365513.2010.493427
73. Wang TJ. Multiple biomarkers for predicting cardiovascular events: lessons learned. J Am Coll Cardiol 2010;55:2092-5. https://doi.org/10.1016/j.jacc.2010.02.019
74. Гаврилова Н.Е., Метельская В.А., Перова Н.В. и др. Выбор метода количественной оценки поражения коронарных артерий на основе сравнительного анализа ангиографических шкал. Российский кардиологический журнал 2014;6:24-9. https://doi.org/10.15829/1560-4071-2014-6-24-29
75. Gumanova NG, Gavrilova NE, Chernushevich OI, et al. Ratios of leptin to insulin and adiponectin to endothelin are sex-dependently associated with extent of coronary atherosclerosis. Biomarkers. 2017;22(3-4):239-45. https://doi.org/10.1080/1354750X.2016.1201539
76. Гуманова Н.Г., Климушина М.В., Гаврилова Н.Е., Метельская В.А. Комбинированные маркеры начальной стадии атеросклероза коронарных артерий. Биомедицинская химия. 2017;63(3):272-7. https://doi.org/10.18097/PBMC20176303272
77. Метельская В.А. Атеросклероз: мультимаркерные диагностические панели. Российский кардиологический журнал. 2018;8:65-73. https://doi.org/10.15829/1560-4071-2018-8-65-73
Рецензия
Для цитирования:
Метельская В.А., Гуманова Н.Г. Валидные кардиоспецифические биохимические маркеры. Часть I. Кардиоваскулярная терапия и профилактика. 2020;19(4):2573. https://doi.org/10.15829/1728-8800-2020-2573
For citation:
Metelskaya V.A., Gumanova N.G. Valid cardiac biomarkers. Part I. Cardiovascular Therapy and Prevention. 2020;19(4):2573. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2573
ISSN 2619-0125 (Online)