Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Эпигенетика ожирения

https://doi.org/10.15829/1728-8800-2020-2632

Аннотация

Патофизиология ожирения чрезвычайно сложна и включает в себя изменения пищевого поведения, генетические и эпигенетические факторы, воздействие факторов окружающей среды и многое другое. На сегодняшний день ~40 генетических полиморфизмов связаны с ожирением и распределением жира. Однако, поскольку эти варианты не в полной мере объясняют наследственность ожирения, необходимо рассмотреть другие варианты, такие как эпигенетические изменения. Эпигенетические модификации влияют на экспрессию генов без фактического изменения последовательности дезоксирибонуклеиновой кислоты. Кроме того, воздействие окружающей среды в критические периоды развития может повлиять на профиль эпигенетических меток и привести к ожирению. Более глубокое понимание эпигенетических механизмов, лежащих в основе ожирения, может помочь в профилактике, основанной на изменениях образа жизни. Данный обзор сфокусирован на роли эпигенетических модификаций в развитии ожирения и ассоциированных с ним состояний.

Об авторах

О. М. Драпкина
ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Минздрава России
Россия
Оксана Михайловна Драпкина - доктор медицинских наук, профессор, член-корр. РАН, директор

Москва



О. Т. Ким
ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Минздрава России
Россия

Ольга Трофимовна Ким - младший научный сотрудник отдела фундаментальных и прикладных аспектов ожирения

Москва



Список литературы

1. Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431-7. doi:10.1038/ijo.2008.102.

2. Flegal KM, Graubard BI, Williamson DF, Gail MH. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA. 2007;298(17):2028-37. doi:10.1001/jama.298.17.2028.

3. Wedell-Neergaard AS, Krogh-Madsen R, Petersen GL, et al. Cardiorespiratory fitness and the metabolic syndrome: Roles of inflammation and abdominal obesity. PLoS One. 2018;13(3):e0194991. doi:10.1371/journal.pone.0194991.

4. González-Muniesa P, Martínez JA. Precision Nutrition and Metabolic Syndrome Management. Nutrients. 2019;11(10):2411. doi:10.3390/nu11102411.

5. Katzmarzyk PT, Pérusse L, Rao DC, Bouchard C. Familial risk of overweight and obesity in the Canadian population using the WHO/NIH criteria. Obes Res. 2000;8(2):194-7. doi:10.1038/oby.2000.2.

6. Koeppen-Schomerus G, Wardle J, Plomin R. A genetic analysis of weight and overweight in 4-year-old twin pairs. Int J Obes Relat Metab Disord. 2001;25(6):838-44. doi:10.1038/sj.ijo.0801589.

7. Allison DB, Kaprio J, Korkeila M, et al. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes Relat Metab Disord. 1996;20(6):501-6.

8. Fesinmeyer MD, North KE, Ritchie MD, et al. Genetic risk factors for BMI and obesity in an ethnically diverse population: results from the population architecture using genomics and epidemiology (PAGE) study. Obesity. 2013;21(4):835-46. doi:10.1002/oby.20268.

9. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197-206. doi:10.1038/nature14177.

10. Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187-96. doi:10.1038/nature14132.

11. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641-9. doi:10.1093/hmg/ddy271.

12. Keller M, Hopp L, Liu X, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab. 2016;6(1):86-100. doi:10.1016/j.molmet.2016.11.003.

13. Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81-6. doi:10.1038/nature20784.

14. Rohde K, Keller M, la Cour Poulsen L, et al. Genetics and epigenetics in obesity. Metabolism. 2019;92:37-50. doi:10.1016/j.metabol.2018.10.007.

15. Herrera BM, Keildson S, Lindgren CM, et al. Genetics and epigenetics of obesity. Maturitas. 2011;69(1):41-9. doi:10.1016/j.maturitas.2011.02.018.

16. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2013;38(1):23-38. doi:10.1038/npp.2012.112.

17. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381-95. doi:10.1038/cr.2011.22.

18. Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885-7. doi:10.1038/nchembio.687.

19. Manjrekar J. Epigenetic inheritance, prions and evolution. J Genet. 2017;96(3):445-56. doi:10.1007/s12041-017-0798-3.

20. Serizay J, Dong Y, Jänes J, et al. Tissue-specific profiling reveals distinctive regulatory architectures for ubiquitous, germline and somatic genes. BioRxiv. 2020. doi:10.1101/2020.02.20.958579.

21. Teif VB, Beshnova DA, Vainshtein Y, et al. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 2014;24(8):128595. doi:10.1101/gr.164418.113.

22. Ho EV, Klenotich SJ, McMurray MS, Dulawa SC. ActivityBased Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit. PLoS One. 2016;11(11):e0166756. doi:10.1371/journal.pone.0166756.

23. Boender AJ, van Rozen AJ, Adan RA. Nutritional state affects the expression of the obesity-associated genes Etv5, Faim2, Fto, and Negr1. Obesity. 2012;20(12):2420-5. doi:10.1038/oby.2012.128.

24. Kilpeläinen TO, Zillikens MC, Stančákova A, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet. 2011;43(8):753-60. doi:10.1038/ng.866.

25. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):88994. doi:10.1126/science.1141634.

26. Baik I, Shin C. Interactions between the FTO rs9939609 polymorphism, body mass index, and lifestyle-related factors on metabolic syndrome risk. Nutr Res Pract. 2012;6(1):78-85. doi:10.4162/nrp.2012.6.1.78.

27. Li S, Zhao JH, Luan J, et al. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med. 2010;7(8):e1000332. doi:10.1371/journal.pmed.1000332.

28. Qi Q, Qi L. Sugar-sweetened beverages, genetic risk, and obesity. N Engl J Med. 2013;368(3):286-7. doi:10.1056/NEJMc1213563.

29. Zhang X, Qi Q, Zhang C, et al. FTO genotype and 2-year change in body composition and fat distribution in response to weightloss diets: the POUNDS LOST Trial. Diabetes. 2012;61(11):300511. doi:10.2337/db11-1799.

30. de Luis DA, Aller R, Izaola O, et al. Evaluation of weight loss and adipocytokines levels after two hypocaloric diets with different macronutrient distribution in obese subjects with rs9939609 gene variant. Diabetes Metab Res Rev. 2012;28(8):663-8. doi:10.1002/dmrr.2323.

31. Huang T, Hu FB. Gene-environment interactions and obesity: recent developments and future directions. BMC Med Genomics. 2015;8(Suppl 1):S2. doi:10.1186/1755-8794-8-S1-S2.

32. Aschard H, Chen J, Cornelis MC, et al. Inclusion of gene-gene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases. Am J Hum Genet. 2012;90(6):962-72. doi:10.1016/j.ajhg.2012.04.017.

33. Kaprio J. Twins and the mystery of missing heritability: the contribution of gene-environment interactions. J Intern Med. 2012;272(5):440-8. doi:10.1111/j.1365-2796.2012.02587.x.

34. Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990-8. doi:10.1016/S0140-6736(13)62674-4.

35. Richmond RC, Sharp GC, Ward ME, et al. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework. Diabetes. 2016;65(5):1231-44. doi:10.2337/db15-0996.

36. Pfeiffer S, Krüger J, Maierhofer A, et al. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep. 2016;6:27969. doi:10.1038/srep27969.

37. Dahlman I, Sinha I, Gao H, et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes (Lond). 2015;39(6):910-9. doi:10.1038/ijo.2015.31.

38. Voisin S, Almén MS, Zheleznyakova GY, et al. Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Med. 2015;7:103. doi:10.1186/s13073-015-0225-4.

39. Rönn T, Volkov P, Gillberg L, et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet. 2015;24(13):3792813. doi:10.1093/hmg/ddv124.

40. Guénard F, Tchernof A, Deshaies Y, et al. Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome. Transl Res. 2017;184:1-11.e2. doi:10.1016/j.trsl.2017.01.002.

41. Allum F, Shao X, Guénard F, et al. Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Version 2. Nat Commun. 2015;6:7211. doi:10.1038/ncomms8211.

42. Guénard F, Tchernof A, Deshaies Y, et al. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol Genomics. 2014;46(6):216-22. doi:10.1152/physiolgenomics.00160.2013.

43. Rönn T, Volkov P, Davegårdh C, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572. doi:10.1371/journal.pgen.1003572.

44. Houde AA, Légaré C, Biron S, et al. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet. 2015;16:29. doi:10.1186/s12881-015-0174-1.

45. Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond). 2007;4:18. doi:10.1186/1743-7075-4-18.

46. Kuehnen P, Mischke M, Wiegand S, et al. An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet. 2012;8(3):e1002543. doi:10.1371/journal.pgen.1002543.

47. Crujeiras AB, Campion J, Díaz-Lagares A, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept. 2013;186:1-6. doi:10.1016/j.regpep.2013.06.012.

48. Milagro FI, Gómez-Abellán P, Campión J, et al. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29(9):1180-94. doi:10.3109/07420528.2012.719967.

49. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, et al. Prediction of Blood Lipid Phenotypes Using Obesity-Related Genetic Polymorphisms and Lifestyle Data in Subjects with Excessive Body Weight. Int J Genomics. 2018;2018:4283078. doi:10.1155/2018/4283078.

50. Ramos-Lopez O, Samblas M, Milagro FI, et al. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiol Int. 2018;35(7):96981. doi:10.1080/07420528.2018.1446021.

51. Hjort L, Jørgensen SW, Gillberg L, et al. 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner. Clin Epigenetics. 2017;9:40. doi:10.1186/s13148-017-0340-8.

52. Obermann-Borst SA, Eilers PH, Tobi EW, et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res. 2013;74(3):344-9. doi:10.1038/pr.2013.95.

53. Drake AJ, McPherson RC, Godfrey KM, et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol (Oxf). 2012;77(6):808-15. doi:10.1111/j.1365-2265.2012.04453.x.

54. Braun KVE, Dhana K, de Vries PS, et al; BIOS consortium, Hofman A, Hu FB, Franco OH, Dehghan A. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics. 2017;9:15. doi:10.1186/s13148-016-0304-4.

55. Dekkers KF, van Iterson M, Slieker RC, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17(1):138. doi:10.1186/s13059-016-1000-6.

56. Keller M, Kralisch S, Rohde K, et al. Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis. Diabetologia. 2014;57(11):2374-83. doi:10.1007/s00125-014-3356-z.

57. Keller M, Klös M, Rohde K, et al. DNA methylation of SSPN is linked to adipose tissue distribution and glucose metabolism. The FASEB J. 2018;32:6898-910. doi:10.1096/fj.201800528R.

58. Rohde K, Keller M, Klös M, et al. Adipose tissue depot specific promoter methylation of TMEM18. J Mol Med (Berl). 2014;92(8):881-8. doi:10.1007/s00109-014-1154-1.

59. Rohde K, Klös M, Hopp L, et al. IRS1 DNA promoter methylation and expression in human adipose tissue are related to fat distribution and metabolic traits. Sci Rep. 2017;7(1):12369. doi:10.1038/s41598-017-12393-5.

60. Fabre O, Ingerslev LR, Garde C, et al. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics. 2018;10(8):1033-50. doi:10.2217/epi-2018-0039.

61. Lund J, Rustan AC, Løvsletten NG, et al. Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism. PLoS One. 2017;12(4):e0175441. doi:10.1371/journal.pone.0175441.

62. Bajpeyi S, Covington JD, Taylor EM, et al. Skeletal Muscle PGC1α -1 Nucleosome Position and -260 nt DNA Methylation Determine Exercise Response and Prevent Ectopic Lipid Accumulation in Men. Endocrinology. 2017;158(7):2190-9. doi:10.1210/en.2017-00051.

63. Ingerslev LR, Donkin I, Fabre O, et al. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin Epigenetics. 2018;10:12. doi:10.1186/s13148-018-0446-7.

64. Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3(4):1020-7. doi:10.1016/j.celrep.2013.03.018.

65. Sala P, de Miranda Torrinhas RSM, Fonseca DC, et al. Tissuespecific methylation profile in obese patients with type 2 diabetes before and after Roux-en-Y gastric bypass. Diabetol Metab Syndr. 2017;9:15. doi:10.1186/s13098-017-0214-4.

66. Donkin I, Versteyhe S, Ingerslev LR, et al. Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metab. 2016;23(2):369-78. doi:10.1016/j.cmet.2015.11.004.

67. Potabattula R, Dittrich M, Schorsch M, Hahn T, Haaf T, El Hajj N. Male obesity effects on sperm and next-generation cord blood DNA methylation. PLoS One. 2019;14(6):e0218615. doi:10.1371/journal.pone.0218615.


Дополнительные файлы

Рецензия

Для цитирования:


Драпкина О.М., Ким О.Т. Эпигенетика ожирения. Кардиоваскулярная терапия и профилактика. 2020;19(6):2632. https://doi.org/10.15829/1728-8800-2020-2632

For citation:


Drapkina O.M., Kim O.T. Epigenetics of obesity. Cardiovascular Therapy and Prevention. 2020;19(6):2632. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2632

Просмотров: 1372


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)