Preview

Cardiovascular Therapy and Prevention

Advanced search

POPULATION MODELS OF CARDIOVASCULAR RISK PREDICTION: EXPEDIENCE OF MODELING AND ANALYTIC REVIEW OF CURRENT MODELS

https://doi.org/10.15829/1728-8800-2015-6-54-58

Abstract

The review collects the data on the approaches to modeling of population risk of cardiovascular diseases (CVD), including methodological aspects and practical significance of modeling results. The general scheme is provided for population modeling that includes three steps: collection of data for incoming parameters, the modeling process itself and its results, and practical application of the modeling. The main population models are described of the CVD risk with examples and results of its usage. The conclusion provided on the airworthiness for national model development of the prediction of population cardiovascular risk, maximally adapted for Russia specifics and for the expected outcomes of modeling in Russian population. The presence of such instrument makes it, for the policy makers, to predict efficacy of prevention meres and effectively disperse shortened resources. 

About the Authors

A. V. Kontsevaya
National Research Center for Preventive Medicine of the Ministry of Health, Moscow
Russian Federation


S. A. Shalnova
National Research Center for Preventive Medicine of the Ministry of Health, Moscow
Russian Federation


References

1. Yusuf S, Hawken S, Ounpuu S, et al. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9438): 937-52.

2. 2013 ESH/ESC Guidelines for the management of arterial hypertension. Eur Heart J 2013; 34: 2159-219.

3. Matheny M, McPheeters ML, Glasser A, et al. Systematic Review of Cardiovascular Disease Risk Assessment Tools. Evidence Synthesis No. 85. AHRQ Publication No. 11-05155-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; May 2011.

4. Shalnova SA, Kalinina AM, Deev AD, et al. Russian expert system for risk assessment of major noncommunicable diseases (ORISKON). Cardiovascular Therapy and Prevention 2013; 12 (4):51-5. Russian (Шальнова С. А., Калинина А. М., Деев А.Д. и др. Российская экспертная система Оценки РИСКа Основных Неинфекционных заболеваний (ОРИСКОН). Кардиоваскулярная терапия и профилактика 2013; 12 (4): 51-5).

5. Unal B, Capewell S, Critchley UA. Coronary heart disease policy models: a systematic review. BMC Public Health 2006: 6: 213.

6. Balanova YA, Kontsevaya AV, Shalnova SA. Prevalence of behavior cardiovascular risk factors in Russian population: results of ESSE epidemiological study. Cardiovascular Therapy and Prevention 2014; 5: 42-52. Russian (Баланова Ю.А., Концевая А.В., Шальнова С.А. Распространенность поведенческих факторов риска сердечно-сосудистых заболеваний в российской популяции по результатам исследования ЭССЕ. Профилактическая медицина 2014; 5: 42-52).

7. Chamnan P, Simmons RK, Khaw K-T, et al. Estimating the population impact of screening strategies for identifying and treating people at high risk of cardiovascular disease: modelling study. BMJ 2010; 340: c1693.

8. Pandya A, Gaziano TA, Weinstein MC, et al. More Americans Living Longer With Cardiovascular Disease Will Increase Costs While Lowering Quality Of Life. Health Aff 2013; 32(10): 1706-14.

9. Eddy D. Bringing Health Economic Modeling to the 21st Century. Value in health 2006; 9(3): 168-78.

10. Weinstein MC, Coxson PG, Williams LW, et al. Forecasting coronary heart disease incidence, mortality, and cost: the Coronary Heart Disease Policy Model. Am J Public Health 1987; 77: 1417-26.

11. Moran AE, Odden MC, Thanataveerat A, et al. Cost-Effectiveness of Hypertension Therapy According to 2014 Guidelines. N Engl J Med 2015; 372: 447-55.

12. Kontsevaia AV, Suvorova EI, Khudiakov MB. Economic efficiency of renal denervation in patients with resistant hypertension: results of Markov modeling. Kardiologiia 2014; 54(1): 41-7. Russian (Концевая А.В., Суворова Е. И., Худяков М.Б. Экономическая эффективность ренальной денервации у пациентов с резистентной артериальной гипертонией: результаты марковского моделирования. Кардиология 2014; 54(1): 41-7).

13. van Kempen BJ, Ferket BS, Hofman A, et al. Validation of a model to investigate the effects of modifying cardiovascular disease (CVD) risk factors on the burden of CVD: the Rotterdam ischemic heart disease and stroke computer simulation (RISC) model. BMC Med 2012; 10: 158.

14. Capewell S, Morrison CE, McMurray JJ. Contribution of modern cardiovascular treatment and risk factor changes to the decline in coronary heart disease mortality in Scotland between 1975 and 1994. Heart 1999; 81: 380-6.

15. Unal B, Critchley JA, Capewell S. Modelling the decline in coronary heart disease deaths in England and Wales, 1981-2000: comparing contributions from primary prevention and secondary prevention. BMJ 2005; 331: 614.

16. Capewell S, Unal B, Critchley JA, et al. Over 20000 avoidable coronary deaths in England and Wales in 2000: the failure to give effective treatments to many eligible patients. Heart 2006; 92(4): 521-3.

17. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997; 349: 1436-42.

18. Schlessinger L, Eddy DM. Archimedes: a new model for simulating health care systems—the mathematical formulation. J Biomed Informat 2002; 35: 37-50.

19. Kahn R, Robertson RM, Smith R, et al. The impact of prevention on reducing the burden of cardiovascular disease. Circulation 2008; 118: 576-85.

20. Shum K, Alperin P, Shalnova S, et al. 2014 Simulating the Impact of Improved Cardiovascular Risk Interventions on Clinical and Economic Outcomes in Russia. PLoS ONE 2014; 9(8): e103280.

21. Lewsey JD, Lawson KD, Ford I, et al. A cardiovascular disease policy model that predicts life expectancy taking into account socioeconomic deprivation. Heart 2015; 101(3): 201-8.

22. Taljaard M, Tuna M, Bennett C, et al. Cardiovascular Disease Population Risk Tool (CVDPoRT): predictive algorithm for assessing CVD risk in the community setting. A study protocol. BMJ Open 2014; 4: e006701.


Review

For citations:


Kontsevaya A.V., Shalnova S.A. POPULATION MODELS OF CARDIOVASCULAR RISK PREDICTION: EXPEDIENCE OF MODELING AND ANALYTIC REVIEW OF CURRENT MODELS. Cardiovascular Therapy and Prevention. 2015;14(6):54-58. (In Russ.) https://doi.org/10.15829/1728-8800-2015-6-54-58

Views: 6455


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)