Preview

Cardiovascular Therapy and Prevention

Advanced search

Biological vascular age and its relationship with cardiovascular risk factors

https://doi.org/10.15829/1728-8800-2022-2877

Abstract

Aim. To study of the relationship between cardiovascular risk factors and biological vascular age.

Material and methods. The biological vascular age was estimated using models based on the arterial wall parameters. Using multiple logistic and linear regression, we studied the relationship between the biological vascular age and cardiovascular risk factors in 143 people without cardiovascular disease (CVD). Persons with a positive difference between the vascular and chronological age were assigned to the “old” vascular group, and persons with no or negative difference between the vascular and chronological age were assigned to the “young” vascular group.

Results. Linear regression in the “young” vascular group showed an inverse relationship between the difference between the vascular and chronological age with the levels of low-density lipoprotein cholesterol (p=0,001; β±SE=-1,67±0,47), triglycerides (p=0,017; β±SE=-1,66±0,68), urea (p=0,025; β±SE=-0,89±0,39) and insulin resistance index (p=0,001; β±SE=-1,22±0,36). In the “old” vascular group, a direct relationship was found between the difference between the vascular and chronological age and central systolic blood pressure (p=0,015; β±SE=0,10±0,04). According to logistic regression, the likelihood of having “old” vessels increased by 1,23 times with an increase in blood glucose levels by 0,5 mmol/l (p=0,044; odds ratio (OR)=1,23; 95% confidence interval (CI): 1,011,51), the presence of hypertension (p=0,034; OR=3,11; 95% CI: 1,09-8,86) and type 2 diabetes (p=0,025; OR=3,61; 95% CI: 1,1711,09), as well as decreased by 2 times with an increase in high-density lipoprotein cholesterol by 0,3 mmol/l (p=0,003; OR=0,5; 95% CI: 0,32-0,79).

Conclusion. The difference between the biological vascular age and chronological age is associated with traditional CVD risk factors.

About the Authors

A. A. Akopyan
Medical Research and Educational Center, Lomonosov Moscow State University
Russian Federation

Anna Alexandrovna Akopyan - MD, Research intern at the Department of Age-related diseases



I. D. Strazhesko
Medical Research and Educational Center, Lomonosov Moscow State University; Pirogov Russian National Research Medical University, Russian Clinical and Research Center of Gerontology
Russian Federation

Irina Dmitryevna Strazhesko - MD, PhD, Deputy Director of translational medicine, Russian Gerontology Research Center of Pirogov Russian National Research Medical University, Leading Researcher at the Department of Age-related diseases, MSEC Lomonosov MSU



V. G. Klyashtorny
Pirogov Russian National Research Medical University, Russian Clinical and Research Center of Gerontology
Russian Federation

Vladislav Georgiivich Klyashtorny - PhD, biostatistician, Russian Gerontology Research Center of Pirogov Russian National Research Medical University



I. A. Orlova
Medical Research and Educational Center, Lomonosov Moscow State University
Russian Federation

Iana Arturovna Orlova - MD, PhD, Professor, Head of the Department of Age-associated diseases, MSEC Lomonosov MSU



References

1. WHO: health topics/ageing. https://www.who.int/health-topics/ageing#tab=tab_1.

2. Jia L, Zhang W, Chen X. Common methods of biological age estimation. Clin Interv Aging. 2017;12:759-72. doi:10.2147/CIA. S134921.

3. Strazhesko ID, Tkacheva ON, Akasheva DU, et al. Growth Hormone, Insulin-Like Growth Factor-1, Insulin Resistance, and Leukocyte Telomere Length as Determinants of Arterial Aging in Subjects Free of Cardiovascular Diseases. Front Genet. 2017;8:198. doi:10.3389/fgene.2017.00198.

4. Kuo P-L, Schrack JA, Shardell MD, et al. A roadmap to build a phenotypic metric of ageing: insights from the Baltimore Longitudinal Study of Aging. J Intern Med. 2020;287(4):373-94. doi:10.1111/joim.13024.

5. Liu Z, Kuo P-L, Horvath S, et al. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. Basu S, ed. PLoS Med. 2018;15(12):e1002718. doi:10.1371/journal.pmed.1002718.

6. Unnikrishnan A, Freeman WM, Jackson J, et al. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172-85. doi:10.1016/j.pharmthera.2018.11.001.

7. 7 Peters MJ, Joehanes R, Pilling LC, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570. doi:10.1038/ncomms9570.

8. Putin E, Mamoshina P, Aliper A, et al. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY). 2016;8(5):1021-30. doi:10.18632/aging.100968.

9. Krištić J, Vučković F, Menni C, et al. Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci. 2014;69(7):779-89. doi:10.1093/gerona/glt190.

10. Fedintsev A, Kashtanova D, Tkacheva O, et al. Markers of arterial health could serve as accurate non-invasive predictors of human biological and chronological age. Aging (Albany NY). 2017;9(4):1280-92. doi:10.18632/aging.101227.

11. Belsky DW, Harrati A. To the freezers! Stored biospecimens from human randomized trials are an important new direction for studies of biological aging. J Gerontol A Biol Sci Med Sci. 2019;74(1):89-90. doi:10.1093/gerona/gly269.

12. Nakamura S, Mori K, Okuma H, et al. Age-associated decline of monocyte insulin sensitivity in diabetic and healthy individuals. Diab Vasc Dis Res. 2021; 18(1):1479164121989281. doi:10.1177/1479164121989281.

13. Dzięgielewska-Gęsiak S, Stołtny D, Brożek A, et al. Are insulin-resistance and oxidative stress cause or consequence of aging. Exp Biol Med (Maywood). 2020;245(14):1260-67 doi:10.1177/1535370220929621.

14. Santos IS, Bittencourt MS, Goulart AC, et al. Insulin resistance is associated with carotid intima-media thickness in non-diabetic subjects. A cross-sectional analysis of the ELSA-Brasil cohort baseline. Atherosclerosis. 2017; 260:34-40. doi: 10.1016/j.atherosclerosis.201703.011.

15. Ormazabal V, Nair S, Elfeky O, et al. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. doi:10.1186/s12933-018-0762-4.

16. Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr. 2019; 13(2): 1165-72. doi:10.1016/j.dsx.2019.01.040.

17. 17 Dudinskaya EN, Tkacheva ON, Brailova NV, et al. Telomere biology and metabolic disorders: the role of insulin resistance and type 2 diabetes. Probl Endokrinol (Mosk). 2020;66(4):35-44. doi:10.14341/probl12510.

18. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41(1):111-88. doi:10.1093/eurheartj/ehz455.

19. Korneva VA, Kuznetsova TYu, Tikhova GP. Assessment of Vascular Stiffness in Normotensive Patients with Familial Hypercholesterolemia. Kardiologiia. 2018;58(2):24-32. (In Russ.) doi:10.18087/cardio.2018.2.10080.

20. Izumida T, Nakamura Y, Hino Y, et al. Combined Effect of Small Dense Low-Density Lipoprotein Cholesterol (sdLDL-C) and Remnant-Like Particle Cholesterol (RLP-C) on Low-Grade Inflammation. J Atheroscler Thromb. 2020;27(4):319-30. doi:10.5551/jat.49528.

21. Xia X, Chen W, McDermott J, et al. Molecular and phenotypic biomarkers of aging. F1000Res. 2017;6. doi:10.12688/f1000research.10692.1.

22. Lau WL, Vaziri ND. Urea, a true uremic toxin: the empire strikes back. Clin Sci. 2017;131(1):3-12. doi:10.1042/CS20160203.

23. Xie Y, Bowe B, Li T, et al. Blood urea nitrogen and risk of insulin use among people with diabetes. Diab Vasc Dis Res. 2018;15(5):409-16. doi:10.1177/1479164118785050.

24. Jiang H, Li J, Yu K, et al. Associations of estimated glomerular filtration rate and blood urea nitrogen with incident coronary heart disease: the Dongfeng-Tongji Cohort Study. Sci Rep. 2017;7(1):9987 doi:10.1038/s41598-017-09591-6.

25. Battistoni A, Michielon A, Marino G, et al. Vascular Aging and Central Aortic Blood Pressure: From Pathophysiology to Treatment. High Blood Press Cardiovasc Prev. 2020;27(4):299-308. doi:10.1007/s40292-020-00395-w.

26. Bulas J, Potocarova M, Kupcova V, et al. Central systolic blood pressure increases with aortic stiffness. Bratisl Lek Listy. 2019;120(12):894-98. doi:10.4149/BLL_2019_150.

27. 27 Craig A, M C Mels C, Tsikas D, et al. Central systolic blood pressure relates inversely to nitric oxide synthesis in young black adults: the African-PREDICT study. J Hum Hypertens. 2020;35:985-93. doi:10.1038/s41371-020-00453-9.

28. Rizzoni D, Rizzoni M, Nardin M, et al. Vascular Aging and Disease of the Small Vessels. High Blood Press Cardiovasc Prev. 2019;26(3):183-9. doi:10.1007/s40292-019-00320-w.

29. Yu HT, Park S, Shin E-C, et al. T cell senescence and cardiovascular diseases. Clin Exp Med. 2016;16(3):257-63. doi:10.1007/s10238-015-0376-z.


Supplementary files

Review

For citations:


Akopyan A.A., Strazhesko I.D., Klyashtorny V.G., Orlova I.A. Biological vascular age and its relationship with cardiovascular risk factors. Cardiovascular Therapy and Prevention. 2022;21(1):2877. (In Russ.) https://doi.org/10.15829/1728-8800-2022-2877

Views: 922


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)