Creation of a collection of blood samples of patients with multiple myeloma
https://doi.org/10.15829/1728-8800-2021-3043
Abstract
Aim. To create a collection of samples of blood components of patients with multiple myeloma for potential fundamental and applied biomedical research.
Material and methods. The material was collected according to the developed algorithm, including the collection of clinical information, biological material, sample preparation, quality control and storage in the biobank of the National Medical Research Center of Oncology.
Results. As of August 2021, the cryostorage of the National Medical Research Center of Oncology biobank contains a collection of 175 samples of blood serum, plasma and mononuclear cell fraction of patients with multiple myeloma. Samples were obtained from 32 patients of both sexes, the mean age of which was 59,5±1,65 years. To create an electronic catalog, personal, clinical and laboratory data about patients were collected, after which each sample was assigned its own unique identification number. Written informed consent was obtained from all patients for the storage of their biomaterial in a biobank with possible subsequent use for scientific purposes. Freezing of the obtained samples was carried out in accordance with low-temperature storage protocol. The electronic catalog contains a wide range of systematized clinical and laboratory information on samples.
Conclusion. The collection of multiple myeloma samples is a unique resource for potential research on its pathophysiology, the development of diagnostic biomarkers, and the search for targeted agents.
Keywords
About the Authors
N. V. GnennayaRussian Federation
Rostov-on-Don
S. V. Timofeeva
Russian Federation
Rostov-on-Don
A. O. Sitkovskaya
Russian Federation
Rostov-on-Don
I. A. Novikova
Russian Federation
Rostov-on-Don
I. B. Lysenko
Russian Federation
Rostov-on-Don
I. A. Kamaeva
Russian Federation
Rostov-on-Don
O. I. Kit
Russian Federation
Rostov-on-Don
References
1. Van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397(10272):410-27. doi: 10.1016/S0140-6736(21)00135-5.
2. Kumar S, Rajkumar V, Kyle R, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3:17046. doi:10.1038/nrdp.2017.46.
3. Went M, Sud A, Forsti A, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9(1): 1-10. doi:10.1038/s41467-018-08107-8.
4. Menetski JP, Hoffmann SC, Cush SS, et al. The Foundation for the National Institutes of Health Biomarkers Consortium: Past Accomplishments and New Strategic Direction. Clin Pharmacol Ther.2019;105:829-43. doi:10.1002/cpt.1362.
5. Pawlyn C, Davies FE. Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood. 133;7:660-75. doi:10.1182/blood-2018-09-825331.
6. Bhutani M, Landgren O, Usmani SZ. Multiple myeloma: is it time for biomarker-driven therapy? American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting. 2015;e493-503. doi:10.14694/EdBook_AM.2015.35.e493.
7. Zhang F, Guo R, Cui W, et al. Untargeted serum metabolomics and tryptophan metabolism profiling in type 2 diabetic patients with diabetic glomerulopathy. Ren Fail. 2021;43(1):980-92. doi: 10.1080/0886022X.2021.1937219.
8. Salvatore M, Beesley LJ, Fritsche LG, et al. Phenotype risk scores (PheRS) for pancreatic cancer using time-stamped electronic health record data: Discovery and validation in two large biobanks. J Biomed Inform. 2021; 113:103652. doi: 10.1016/j.jbi.2020.103652.
9. Illarionov RA, Kosyakova OV, Vashukova ES, et al. Collection of samples from women at different stages of pregnancy to search for early biomarkers of preterm birth. Cardiovascular Therapy and Prevention. 2020;19(6):2708. (In Russ.) doi:10.15829/1728-8800-2020-2708.
10. Grivtsova LYu, Popovkina OE, Dukhova NN, et al. Cell biobank as a necessary infrastructure for the development and implementation of mesenchymal stem cell-based therapy in the treatment of anthracycline-induced cardiotoxicity. Literature review and own data. Cardiovascular Therapy and Prevention. 2020;19(6):2733. (In Russ.) doi:10.15829/1728-8800-2020-2733.
11. Drapkina OM. Russian National Association of Biobanks and Biobanking Specialists — a tool for integrating Russian biobanks and increasing the efficiency of biomedical research. Cardiovascular Therapy and Prevention. 2020;19(6):2757. (In Russ.) doi:10.15829/1728-8800-2020-2757.
12. Boyum A. Separation of leukocytes from blood and bone marrow. Scand J Clin Lab Invest. 1968;21(97):1-9.
13. Zuderman NE, Ushakova ND, Lysenko NB, et al. Experience with the use of selective plasma exchange in patients with newly detected secreting multiple myeloma. Alexander Saltanov Intensive Care Herald. 2019;2:98-104. (In Russ.) doi:10.21320/1818-474X-2019-2-98-104.
14. Rajkumar S, Gupta V, Fonseca R, et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia. 2013;27:1738-44. doi:10.1038/leu.2013.86.
15. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33;26:2863. doi:10.1200/JCO.2015.61.2267.
16. Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8:268. doi:10.1038/s41467-017-00296-y.
17. 17 Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223-38. doi:10.1038/nrc.2017.7.
18. Kis O, Kaedbey R, Chow S, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017;8;15086. doi: 10.1038/ncomms15086.
19. Mithraprabhu S, Khong T, Ramachandran M, et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia. 2017;31:1695-705. doi:10.1038/leu.2016.366.
20. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997 doi:10.1038/ncomms3997.
21. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587-97 doi: 10.1182/blood-2018-03-840132.
22. Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9:1691. doi:10.1038/s41467-018-04001-5.
23. Ravi G, Gonsalves WL. Current Diagnosis, Risk Stratification and Treatment Paradigms in Newly Diagnosed Multiple Myeloma. Cancer Treat Res Commun. 2021:100444. doi: 10.1016/j.ctarc.2021.100444.
24. Nandakumar B, Binder M, Dispenzieri A, et al. Continued improvement in survival in multiple myeloma (MM) including high-risk patients. J Clin Oncol. 2019.378039. doi: 10.1200/JCO.2019.37.15_suppl.8039.
25. Razavi P, Li BT, Brown DN, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25:1928-37 doi:10.1038/s41591-019-0652-7.
26. Garces JJ, Simicek M, Vicari M, et al. Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination. Leukemia. 2020;34:589-603. doi:10.1038/s41375-019-0588-4.
27. 27 Bianchi G, Kyle RA, Larson DR, et al. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma. Leukemia. 2013;27:680-85. doi:10.1038/leu.2012.237.
28. Gonsalves WI, Rajkumar SV, Gupta V, et al. Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: implications for redefining high-risk myeloma. Leukemia. 2014;28:2060-5. doi:10.1038/leu.2014.98.
29. Sanoja-Flores L, Flores-Montero J, Garces JJ, et al. Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC). Blood Cancer J. 2018;8:117 doi:10.1038/s41408-018-0153-9.
30. Garces JJ, Bretones G, Burgos L, et al. Circulating tumor cells for comprehensive and multiregional non-invasive genetic characterization of multiple myeloma. Leukemia. 2020;34:3007-18. doi:10.1038/s41375-020-0883-0.
Supplementary files
Review
For citations:
Gnennaya N.V., Timofeeva S.V., Sitkovskaya A.O., Novikova I.A., Lysenko I.B., Kamaeva I.A., Kit O.I. Creation of a collection of blood samples of patients with multiple myeloma. Cardiovascular Therapy and Prevention. 2021;20(8):3043. (In Russ.) https://doi.org/10.15829/1728-8800-2021-3043