Preview

Cardiovascular Therapy and Prevention

Advanced search

New SARS-CoV-2 Omicron variant — clinical picture, treatment, prevention (literature review)

https://doi.org/10.15829/1728-8800-2022-3228

Abstract

Despite the decrease in the incidence rate, today the problem of a coronavirus disease 2019 (COVID-19) remains relevant on a global scale. Among the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) variants, the Omicron is currently dominant. The differentiating properties of the Omicron variant are a shorter incubation period (1-5 days), high contagiousness, and a relatively mild course of the disease, which is associated with the highest number of genome mutations among all SARS-CoV-2 variants. The new variant is characterized by upper respiratory tract symptoms: rhinorrhea, severe sore throat, sneezing, less commonly cough, headache, and weakness. Oral antiviral drugs Paxlovid and Molnupiravir are effective for treating mild to moderate COVID-19, including in outpatients. While corticosteroids and interleukin-6 receptor antagonists are still effective in treating patients with moderate to severe COVID-19, the effectiveness of anti-SARS-CoV-2 monoclonal antibodies has not yet been fully proven. Vaccination, especially booster doses, against SARS-CoV-2 is the most effective method of preventing COVID-19. The review purpose was to analyze the literature to determine the key aspects of prevention, clinical picture and treatment of a new SARSCoV-2 Omicron variant. The work used publications for the period from November 2021 to February 25, 2022, dedicated to the prevention, diagnosis and treatment of COVID-19 caused by the Omicron variant from the following databases: PubMed, eLibrary, MedRxiv, Google Scholar. The following key words were used: “Omicron”, “SARS CoV-2”, “COVID-19”, “Omicron treatment”. The analysis showed that COVID-19 caused by the Omicron variant is characterized by a relatively mild course. However, due to high contagiousness, this variant poses a significant problem due to the excessive load on outpatient and inpatient healthcare, including intensive care units.

About the Authors

V. I. Vechorko
City Clinical Hospital № 15
Russian Federation

Moscow



O. V. Averkov
City Clinical Hospital № 15
Russian Federation

Moscow



A. A. Zimin
City Clinical Hospital № 15; Research Center of Neurology
Russian Federation

Moscow



References

1. Namazova-Baranova LS, Sadeki N, Efendieva KE. New Evidence on the Evolution of the COVID-19 Pandemic: A Literature Review. Pediatric pharmacology. 2021;18:314-9. (In Russ.) doi:10.15690/pf.v18i4.2299.

2. Raschetti R, Vivanti AJ, Vauloup-Fellous C, et al. Synthesis and systematic review of reported neonatal SARS-CoV-2 infections. Nat Commun. 2020;11:51-64. doi:10.1038/s41467020-18982-9.

3. Fischer W, Eron JJ, Holman W, et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. MedRxiv. 2021 (Jun 17, 2021). doi:10.1101/2021.06.17.21258639.

4. Singh AK, Singh A, Singh R, et al. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab Syndr. 2021;15(6):102329. doi:10.1016/j.dsx.2021.102329.

5. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479-90. doi:10.1002/jmv.25707.

6. Shlyakhto EV, Konradi AO, Arutyunov GP, et al. Guidelines for the diagnosis and treatment of diseases of the circulatory system in the context of the COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(3):3801. (In Russ.) doi:10.15829/1560-4071-2020-3-3801.

7. Chen J, Wang R, Gilby NB, et al. Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. J Chem Inf Model. 2022;62(2):412-22. doi:10.1021/acs.jcim.1c01451.

8. Torjesen I. COVID‐19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ. 2021;375:n2943. doi:10.1136/bmj.n2943.

9. Pearson C, Silal S, Li M, et al. Bounding the levels of transmissibility & immune evasion of the Omicron variant in South Africa. MedRxiv. 2021. (December 21, 2021). doi:10.1101/2021.12.19.21268038.

10. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARSCoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399:1303-12. doi:10.1016/S0140-6736(22)00462-7.

11. Lewnard JA, Hong VX, Patel M, et al. Clinical outcomes among patients infected with Omicron (B.1.1.529) SARS-CoV-2 variant in southern California. MedRxiv. 2022. doi:10.1101/2022.01.11.22269045.

12. Araf Y, Akter F, Tang YD, et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol. 2022;94(5):1825-32. doi:10.1002/jmv.27588.

13. Tikhonov DG. How the delta variant of SARS-COV-2 was curbed in Japan. Will Omicron replace it? Siberian Research, 2021;2(6):610. (In Russ.) doi:10.33384/26587270.2021.06.02.01r.

14. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):72733. doi:10.1056/NEJMoa2001017.

15. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak — an update on the status. Mil Med Res. 2020;7(1):11. doi:10.1186/s40779-020-00240-0.

16. Jin Y, Yang H, Ji W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4):E372. doi:10.3390/v12040372.

17. Lin L, Lu L, Cao W, et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-32. doi:10.1080/22221751.2020.1746199.

18. Martsevich SYu, Kutishenko NP, Lukina YuV, et al. Self-monitoring and treatment of chronic noncommunicable diseases during the COVID-19 pandemic. Expert consensus of the National Society for Evidence-Based Pharmacotherapy and the Russian Society for the Prevention of Noncommunicable Diseases. Cardiovascular Therapy and Prevention. 2020;19(3):2567. (In Russ.) doi:10.15829/1728-8800-2020-2567.

19. Drapkina OM, Drozdova LYu, Avdeev SN, et al. Provision of outpatient medical care to patients with chronic diseases subject to dispensary observation during the COVID-19 pandemic. Temporary guidelines. Version 2. Cardiovascular Therapy and Prevention. 2021;20(8):3172. (In Russ.) doi:10.15829/17288800-2021-3172.

20. Vechorko VI, Averkov OV, Grishin DV, et al. NEWS2, 4C Mortality Score, COVID-GRAM, Sequential Organ Failure Assessment Quick scales as tools for assessing the outcomes of severe COVID-19 (pilot retrospective cohort study). Cardiovascular Therapy and Prevention. 2022;21(3):3103. (In Russ.) doi:10.15829/1728-8800-20223103.

21. Wong SH, Lui RN, Sung JJ. Covid-19 and the Digestive System. J Gastroenterol Hepatol. 2020;10.1111/jgh.15047. doi:10.1111/jgh.15047.

22. Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature. 2022;603(7902):715-20. doi:10.1038/s41586-022-04479-6.

23. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 2022;603(7902):700-5. doi:10.1038/s41586-022-04462-1.

24. Meng B, Ferreira IATM, Abdullahi A, et al. SARS-CoV-2 Omicron spike mediated immune escape, infectivity and cell-cell fusion. BioRxiv. 2021. (January 13, 2022). doi:10.1101/2021.12.17.473248.

25. Willet BJ, Grove J, MacLean OA, et al. The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism. MedRxiv. 2022. (January 3, 2022). doi:10.1101/2022.01.03.21268111.

26. Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta Chain of Hemoglobin to Disrupt Respiratory Function and Escape Immunity. ChemRxiv. 2022. (January 24, 2022). doi:10.26434/chemrxiv-2021-dtpv3-v11.

27. Drożdżal S, Rosik J, Lechowicz K, et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resistance Updates. 2021;59:100794. doi:10.1016/j.drup.2021.100794.

28. Abdelnabi R, Foo CS, Zhang X, et al. The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. BioRxiv. 2021. (December 26, 2021). doi:10.1101/2021.12.24.474086.

29. Ryan KA, Watson RJ, Bewley KR, et al. Convalescence from prototype SARS-CoV-2 protects Syrian hamsters from disease caused by the Omicron variant. BioRxiv. 2021. (December 26, 2021). doi:10.1101/2021.12.24.474081.

30. Cedro-Tanda А, Gómez-Romero L, de Anda-Jauregui G., et al. Early genomic, epidemiological, and clinical description of the SARS-CoV-2 Omicron variant in Mexico City. MedRxiv. 2022. (February 7, 2022). doi:10.1101/2022.02.06.22270482.

31. Bhattacharyya RP, Hanage WP. Challenges in Inferring Intrinsic Severity of the SARSCoV-2 Omicron Variant. N Engl J Med. 2022;386:e14. doi:10.1056/NEJMp2119682.

32. Pritchard E, House T, Studley R, et al. Omicron-associated changes in SARS-CoV-2 symptoms in the United Kingdom. MedRxiv. 2022. (February 4, 2022). doi:10.1101/2022.01.18.22269082.

33. Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet. 2022;399(10323):437-46. doi:10.1016/S0140-6736(22)00017-4.

34. Ahmed SF, Quadeer AA, McKay MR. SARS-CoV-2 T cell responses are expected to remain robust against Omicron. BioRxiv. 2021. (December 14, 2021). doi:10.1101/2021.12.12.

35. De Marco L, D’Orso S, Pirronello M, et al. Preserved T cell reactivity to the SARS-CoV-2 Omicron variant indicates continued pro tection in vaccinated individuals. BioRxiv. 2021. (December 30, 2021). doi:10.1101/2021.12.30.474453.

36. Keeton R, Tincho MB, Ngomti A, et al. SARS-CoV-2 spike T cell responses induced upon vaccination or infection remain robust against Omicron. MedRxiv. 2021. (December 26, 2021). doi:10.1101/2021.12.26.21268380.

37. Redd AD, Nardin A, Kared H, et al. Minimal cross-over between mutations associated with Omicron variant of SARSCoV-2 and CD8+ T cell epitopes identified in COVID-19 convalescent individuals. BioRxiv. 2021. (December 6, 2021). doi:10.1101/2021.12.06.471446.

38. May DH, Rubin BER, Dalai SC, et al. Immunosequencing and epitope mapping reveal substantial preservation of the T cell immune response to Omicron generated by SARS-CoV-2 vaccines. MedRxiv. 2021. (December 20, 2021) doi:10.1101/2021.12.20.21267877.

39. Netzl A, Tureli S, LeGresley E, et al. Analysis of SARS-CoV-2 Omicron Neutralization Data up to 2021-12-22. BioRxiv. 2021. (December 31, 2021). doi:10.1101/2021.12.31.474032.

40. Pulliam J, van Schalkwyk C, Govender N. Increased risk of SARSCoV-2 reinfection associated with emergence of the Omicron variant in South Africa. MedRxiv. 2021. (December 2, 2021). doi:10.1101/2021.11.11.21266068v2.

41. Altarawneh H, Chemaitelly H, Tang P, et al. Protection afforded by prior infection against SARS-CoV-2 reinfection with the Omicron variant. MedRxiv. 2022. (January 5, 2022). doi:10.1101/2022.01.05.22268782.

42. Nesteruk I, Rodionov O. How dangerous is omicron and how effective are vaccinations? MedRxiv. 2022. (January 27, 2022). doi:10.1101/2022.01.27.22269909.

43. Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological memory able to cross-recognize variants from Alpha to Omicron. MedRxiv. 2021. (December 28, 2021). doi:10.1101/2021.12.28.474333.

44. Collie S, Champion J, Moultrie H, et al. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N Engl J Med. 2022;386:494-6. doi:10.1056/NEJMc2119270.

45. Scott L, Hsiao NY, Moyo S, et al. Track Omicron’s spread with molecular data. Science. 2021;374(6574):1454-5. doi:10.1126/science.abn4543.

46. Borges V, Sousa C, Menezes L, et al. Tracking SARS-CoV-2 lineage B.1.1.7 dissemination: insights from nationwide spike gene target failure (SGTF) and spike gene late detection (SGTL) data, Portugal, week 49 2020 to week 3 2021. Euro Surveill. 2021;26(10):2100131. doi:10.2807/1560-7917.ES.2021.26.10.2100130.

47. Chen Z, Zhang P, Matsuoka Y, et al. Extremely potent monoclonal antibodies neutralize Omicron and other SARS-CoV-2 variants. MedRxiv. 2022. (January 12, 2022). doi:10.1101/2022.01.12.22269023.

48. Ikemura N, Hoshino А, Higuchi Y, et al. SARS-CoV-2 Omicron variant escapes neutralization by vaccinated and convalescent sera and therapeutic monoclonal antibodies. MedRxiv. 2021. (December 13, 2021). doi:10.1101/2021.12.13.21267761.

49. Hu YF, Hu JC, Chu H, et al. In-Silico Analysis of Monoclonal Antibodies against SARS-CoV-2 Omicron. Viruses. 2022;14(2): 390. doi:10.3390/v14020390.

50. Zinatizadeh MR, Zarandi PK, Zinatizadeh M, et al. Efficacy of mRNA, adenoviral vector, and perfusion protein COVID-19 vaccines. Biomed Pharmacother. 2022;146:112527. doi:10.1016/j.biopha.2021.112527.

51. Li P, Wang Y, Lavrijsen M, et al. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combina- tion. Cell Res. 2022;1-3. doi:10.1038/s41422-022-00618-w.

52. Ulloa AC, Buchan SA, Daneman N, et al. Early estimates of SARSCoV-2 Omicron variant severity based on a matched cohort study, Ontario, Canada Medrxiv. 2021. (December 24, 2021). doi:10.1101/2021.12.24.21268382.

53. Andrews N, Stowe J, Kirsebom F et al., Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern. MedRxiv. (December 14, 2021). doi:10.1101/2021.12.14.21267615.


Supplementary files

Review

For citations:


Vechorko V.I., Averkov O.V., Zimin A.A. New SARS-CoV-2 Omicron variant — clinical picture, treatment, prevention (literature review). Cardiovascular Therapy and Prevention. 2022;21(6):3228. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3228

Views: 1641


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)