Smartphone in medicine — from a reference book to a diagnostic system. Overview of the current state of the issue
https://doi.org/10.15829/1728-8800-2022-3298
Abstract
The paper provides a brief overview of the modern possibilities of using a smartphone as a diagnostic device of a wide profile. In some cases, additional specialized attachments are required. In others, the diagnostic algorithm uses only standard cameras, a microphone and various built-in smartphone sensors. The development of the smartphone integration into the healthcare system is modern, relevant and very promising, given the widespread use of smartphones among the global population.
About the Authors
A. A. FedorovichRussian Federation
Moscow
A. Yu. Gorshkov
Russian Federation
Moscow
A. I. Korolev
Russian Federation
Moscow
O. M. Drapkina
Russian Federation
Moscow
References
1. Pelegris P, Banitsas K, Orbach T, et al. A novel method to detect Heart Beat Rate using a mobile phone. Conf Proc IEEE Eng Eng Med Biol Soc. 2010:5488-91. doi:10.1109/IEMBS.2010.5626580.
2. Sountsova OV, Rakhmanina MA. High-tech methods of electrocardiography. Innovation and Investment. 2015;10:222-5. (In Russ.)
3. Chaykovskaya MK, Sountsova OV. Remote monitoring of patient’s ECG as part of the integrated approach in the observation of the patients with arrhythmias (case study). J New Medical Technologies, eEdition. 2017;1:129-34. (In Russ.)
4. Fedorovich AA, Drapkina OM. Web capillaroscopy — a new method of non-invasive research of microcirculatory blood flow in human skin. Profilakticheskaya Meditsina. 2020;23(4): 100-3. (In Russ.) doi:10.17116/profmed202023041100.
5. Fedorovich AA, Gorshkov AYu, Drapkina OM. Modern possibilities of non-invasive research and remote monitoring of capillary blood flow in human skin. Regional Hemodinamics and Microcirculation. 2020;19(4):87-91. (In Russ.) doi:10.24884/16822020-19-4-87-91.
6. Nachman D, Gepner Y, Goldstein N, et al. Comparing blood pressure measurements between a photoplethysmographybased and a standard cuff-based manometry device. Scientific Reports. 2020;10:16116. doi:10.1038/s41598-020-73172-3.
7. Bashar SK, Han D, Hajeb-Mohammadalipour S, et al. Atrial fibrillation detection from wrist photoplethysmography signals using smartwatches. Sci Rep. 2019;9:15054. doi:10.1038/s41598-019-49092-2.
8. Dorr M, Nohturfft V, Brasier N, et al. The Watch AF trial: SmartWATCHes for detection of atrial fibrillation. JACC: Clin Electrophysiol. 2019;5(2):199-208. doi:10.1016/j.jacep.2018.10.006.
9. Malerbi FK, Andrade RE, Morales PH, et al. Diabetic retinopathy screening using artificial intelligence and handheld smartphonebased retinal camera. J Diabet Sci Technol. 2021:1-8. doi: 10.1177/1932296820985567.
10. Udrea A, Mitra GD, Costea D, et al. Accuracy of a smartphone application for triage of skin based on machin learning algorithms. Dermatol Venereol. 2020;34(3):648-55. doi:10.1111/jdv15935.
11. Haenssel HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8): 1836-42. doi:10.1093/annonc/mdy166.
12. Agarwal A, Selvam MKP, Sharma R, et al. Home sperm testing device versus laboratory sperm quality analyzer: comparison of motile sperm concentration. Fertil Steril. 2018;110(7):1277-83. doi:10.1016/j.fertnstert.2018.08.049.
13. Shore J, Green M, Hardy A, et al. The compliance and costeffectiveness of smartphone urinanalysis albumin screening for people with diabetes in England. Expert Rev Pharmacoecon Outcomes Res. 2020;20(4):387-95. doi:10.1080/14737167.2019.1650024.
14. Leddy J, Grenn JA, Yule C, et al. Improving proteinuria screening with mailed smartphone urinalysis testing in previously unscreened patients with hypertension: a randomized controlled trial. BMC Nephrol. 2019;20:132. doi:10.1186/s12882-019-1324-z.
15. Fozouni P, Son S, Derby MDL, et al. Amplification-free detection of SARS-CoV-2 with CRISP-Cas13a and mobile phone microscopy. Cell. 2021;184:323-33. doi:10.1016/j.cell.2020.12.001.
16. Ganguli A, Ornob A, Yu H, et al. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care. Biomed Microdevices. 2017;19(4):73. doi:10.1007/s10544-017-0209-9.
17. Laguarta J, Puig FH, Subirana B. COVID-19 artificial intelligence diagnosis using only cough recording. IEEE Open J Eng Med Biol. 2020;1:275-281. doi:10.1109/OJEMB.2020.3026928.
18. Porter P, Claxton S, Brisbane J, et al. Diagnosing chronic obstructive airway disease on a smartphone using patientreported symptoms and cough analysis: diagnostic accuracy study. JMIR Form Res. 2020;4(11):e24587. doi:10.2196/24587.
19. Lyon G, Tiron R, Zaffaroni A, et al. Detection of sleep apnea using sonar smartphone technology. Annual Int Conf IEEE Eng Med Biol Soc. 2019;7193-6. doi:10.1109/EMBC.2019.8857836.
20. Ghosal S, Das D, Venkanna U, et al. sHEMO: Smartphone spectroscopy for blood hemoglobin level monitoring in smart anemia-care. IEEE Sensors J. 2020;99:1. doi:10.1109/JSEN.2020.3044386.
21. Poh MZ, McDuff DJ, Picard RW. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express. 2010;18(10):10762-74. doi:10.1364/OE.18.010762.
22. Scully CG, Lee J, Meyer J, et al. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans Biomed Eng. 2012;59(2):303-6. doi:10.1109/TBME.2011.2163157.
23. De Ridder B, Van Rompaey B, Kampen JK, et al. Smartphone apps using photoplethysmography for heart rate monitoring: Metaanalysis. JMIR Cardiol. 2018;2(1):e4. doi:10.2196/cardio.8802.
24. Yan BP, Lai WHS, Chan CKY, et al. Contact-free screening of atrial fibrillation by a smartphone using facial pulsatile photoplethysmographic signals. J Am Heart Assoc. 2018; 7(8):e008585. doi:10.1161/JAHA.118.008585.
25. Yan BP, Lai WHS, Chan CKY, et al. High-throughput, contact-free detection of atrial fibrillation from video with deep learning. JAMA Cardiol. 2020;5(1):105-7. doi:10.1001/jamacardio.2019.4004.
26. Varma N, Cygankiewicz I, Turakhia M, et al. 2021 ISHNE/HRS/ EHRA/APHRS collaborative statement on mHealth in arrhythmia management: digital medical tools for heart rhythm professionals. Ann Noninvasive Electrocardiol. 2021;26(2): e12795. doi:10.1111/anec.12795.
27. Luo H, Yang D, Barszczyk A, et al. Smartphone-dases blood pressure measurement using transdermal optical imaging technology. Circ Cardiovasc Imaging. 2019;12:e008857. doi: 10.1161/CIRCIMAGING.119.008857.
28. Fedorovich AA, Drapkina OM, Pronko KN, et al. Telemonitoring of capillary blood flow in the human skin: new opportunities and prospects. Clin Pract. 2018;15(2):561-7. doi:10.4172/clinicalpractice.1000390.
29. Lin S, Li Z, Fu B, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo. Eur Heart J. 2020;41(46):4400-11. doi:10.1093/eurheartj/ehaa640.
Supplementary files
Review
For citations:
Fedorovich A.A., Gorshkov A.Yu., Korolev A.I., Drapkina O.M. Smartphone in medicine — from a reference book to a diagnostic system. Overview of the current state of the issue. Cardiovascular Therapy and Prevention. 2022;21(9):3298. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3298