Preview

Cardiovascular Therapy and Prevention

Advanced search

Repeated valve replacement: approaches and devices (literature review)

https://doi.org/10.15829/1728-8800-2023-3377

Abstract

Bioprosthetic valve dysfunction represent a serious drawback that limits the wider clinical use of these medical devices for valvular heart disease surgery. Modern studies describe the view of pathophysiologists on this problem as a multifactorial multi-stage process that causes irreversible changes in bioprosthesis components, ultimately leading to its dysfunction. However, in addition to under- standing the causes and manifestations of prosthetic valve dys- function, an applied question arises about the treatment strategies — determining the most attenuated and accessible low-risk method/ device. The aim of this review was to analyze and systematize current literature data on methods and designs used in repeated surgical and transcatheter interventions on heart valves.

About the Authors

K. Yu. Klyshnikov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kemerovo



E. A. Ovcharenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kemerovo



A. N. Stasev
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kemerovo



L. S. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kemerovo



References

1. Kozlov BN, Petlin KA, Kosovskikh EA, et al. The first experience of using a valve-containing conduit with a biological aortic valve prosthesis and the "easy change". Cardiology and cardiovascular surgery. 2019;12(5):429-32. (In Russ.) doi:10.17116/kardio201912051429.

2. Sellers SL, Blanke P, Leipsic JA. Bioprosthetic Heart Valve Degeneration and Dysfunction: Focus on Mechanisms and Multidisciplinary Imaging Considerations. Radiol Cardiothorac Imaging. 2019;1(3):e190004. doi:10.1148/ryct.2019190004.

3. Ivanov VA, Semenova EV, Evseev EP, et al. Long-term results of aortic valve replacement with biological prostheses of small diameter. Cardiology and cardiovascular surgery. 2019;12(2):116-21. (In Russ.) doi:10.17116/kardio201912021116.

4. Barbarash LS, Zhuravleva IYu. Bioprosthetic heart valve evolution: two decades of advances and challenges. Complex problems of cardiovascular diseases. 2012;1:4-11. (In Russ.)

5. Fedorov SA, Chiginev VA, Zhurko SA, et al. Clinical and hemodynamic results of applying different biological prosthesis models for correction of calcific aortic valve disease. Modern technologies in medicine. 2016;8(4):292-6. (In Russ.)

6. Zhuravleva IYu, Burkova TV, Rutkovskaya NV, et al. Potential of pharmacogenetics in the correction of anticoagulant therapy among patient with prosthetic heart valves. Cardiovascular Therapy and Prevention. 2013;12(3):24-8. (In Russ.) doi:10.15829/1728-8800-2013-3-24-28.

7. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Russian Journal of Cardiology. 2022;27(7):5160. (In Russ.) 2021 doi:10.15829/1560-40712022-5160.

8. Shpilevoy NY, Vavilov PA, Zaytseva RS, et al. Aortic valve replacement using current bivalve prostheses: Immediate and late results On-X and MedEng-2. Medical Journal of the Russian Federation. 2011;17(4):22-7. (In Russ.)

9. Babenko SI, Soboleva NN, Bakuleva NP, et al. Long-term results of mitral and aortic valve replacement with xenopericardial prosthesis "Biolab". Complex problems of cardiovascular diseases. 2018;7(2):61-70. (In Russ.) doi:10.17802/2306-1278-2018-7-2-61-70.

10. Bondarenko NA, Surovtseva MA, Lykov AP, et al. Cytotoxicity of Xenogeneic Pericardium Preserved by Epoxy CrossLinking Agents. 2021;13(4):27. (In Russ.) doi:10.17691/stm2021.13.4.03.

11. Odarenko YN, Rutkovskaya NV, Rogulina NV, et al. Analysis of 23-year experience epoxy treated xenoaortic bioprosthesisin surgery mitral heart disease. Research factors of recipients by positions of influence on the development of calcium degeneration. Complex Issues of Cardiovascular Diseases. 2015;(4):17-25. (In Russ.) doi:10.17802/2306-1278-2015-4-17-25.

12. Barbarash LS, Rogulina NV, Rutkovskaya NV, et al. Mechanisms underlying bioprosthetic heart valve dysfunctions. Complex Issues of Cardiovascular Diseases. 2018;7(2):10-24. (In Russ.) doi:10.17802/2306-1278-20187-2-10-24.

13. Kobelev E, Bergen TA, Tarkova AR, et al. A new look at structural changes in the aortic root in aortic valve stenosis. Modern technologies in medicine. 2022;14(2):51. (In Russ.) doi:10.17691/stm2022.14.2.05.

14. Barbarash LS, Karaskov AM, Semenovsky ML, et al. Bioprostheses of heart valves in Russia: experience of three clinics. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2011;(2):21-6. (In Russ.)

15. Imaev TE, Komlev AE, Kolegaev AS, et al. The current status of transcatheter heart valve replacement, using the valve-in-valve technique. Consilium Medicum. 2016;18 (5):89-92. (In Russ.) doi:10.17116/kardio20158249-53.

16. Koziarz A, Makhdoum A, Butany J, et al. Modes of bioprosthetic valve failure: a narrative review. Curr Opin Cardiol. 2020;35(2):123-32. doi:10.1097/HCO.0000000000000711.

17. Murzabekova LI, Orlov VA. Various clinical factors’ influence on long-term results of valve prosthetic surgery in heart valve disease. Cardiovascular Therapy and Prevention. 2005;4(1):72-7. (In Russ.)

18. Rogolevich VV, Glushkova TV, Ponasenko AV, Ovcharenko E.A. Infective Endocarditis Causing Native and Prosthetic Heart Valve Dysfunction. Kardiologiia. 2019;59(3):68-77. (In Russ.) doi:10.18087/cardio.2019.3.10245.

19. Bockeria LA, Milievskaya EB, Kudzoeva ZF, et al. Cardiovascular surgery — 2018. Diseases and congenital malformations of the circulatory system. Moscow: FGBU "NMICSSKH im. A. N. Bakuleva" MZ RF, 2019. p. 270. (In Russ.) ISBN: 978-5-7982-0408-3.

20. Gabrielyan NI, Gorskaya EM, Arefieva LI, et al. Microflora of resected valves in patients with infective endocarditis. Annals of Surgery. 2012;(3):22-5. (In Russ.)

21. Leroy O, Georges H, Devos P, et al. Infective endocarditis requiring ICU admission: epidemiology and prognosis. Ann Intensive Care. 2015;5(1):45. doi:10.1186/s13613-015-0091-7.

22. Stasev AN, Shukevich DL, Rutkovskaya NV, et al. The use of modern high-tech methods for redo heart valve replacement in high-risk patients: case report. Complex Issues of Cardiovascular Diseases. 2015;(3):85-90. (In Russ.) doi:10.17802/23061278-2015-3-85-90.

23. Karaskov AM, Zheleznev SI, Nazarov VM, et al. Clinico-morphological changes in dysfunctions of biological heart prostheses. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2006;(2):21-6. (In Russ.)

24. Barbarash LS, Stasev AN, Kokorin SG, et al. Immediate results of mitral valve-in-valve implantation for bioprosthetic valve dysfunction Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2015;19(2):36-41. (In Russ.) doi:10.21688/1681-3472-2015-2-36-41.

25. Rogulina NV, Khalivopulo IK "Valve-On-Valve" — an alternative method of surgical treatment of tissue valve dysfunctions. Russian Journal of Cardiology. 2019;(8):140-9. (In Russ.) doi:10.15829/15604071-2019-8-140-149.

26. Miyairi S, Koide M, Kunii Y, et al. Redo mitral valve replacement using the valve-on-valve method. Asian Cardiovasc Thorac Ann. 2015;23(6):707-9. doi:10.1177/0218492314524206.

27. Santarpino G, Pfeiffer S, Concistrè G, et al. REDO aortic valve replacement: the sutureless approach. J Heart Valve Dis. 2013;22(5):615-20.

28. Tarasov RS, Imaev TE, Ganyukov VI, et al. Transcatheter reimplantation of bioprosthesis of theheart valve to a patient with critical aortal insufficiency later for 32 years after primary prosthetics. Grudnaya i Serdechno-Sosudistaya Khirurgiya (Russian Journal of Thoracic and Cardiovascular Surgery). 2018;60(2):160-6. (In Russ.) doi:10.24022/0236-2791-2018-60-2160-166.

29. Ganyukov VI, Shloido EA, Tarasov RS, et al. Transseptal transcatheter valve-in-valve implantation for failed surgical mitral bioprosthesis: the first clinical experience. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2020;24(1):94-103. (In Russ.) doi:10.21688/1681-3472-2020-1-94-103.

30. Leontyev S, Borger MA, Modi P, et al. Redo aortic valve surgery: Influence of prosthetic valve endocarditis on outcomes. J Thorac Cardiovasc Surg. 2011;142(1):99-105. doi:10.1016/j.jtcvs.2010.08.042.

31. Chalmers J, Pullan M, Mediratta N, et al. A need for speed? Bypass time and outcomes after isolated aortic valve replacement surgery. Interact Cardiovasc Thorac Surg. 2014;19(1):21-6. doi:10.1093/icvts/ivu102.

32. Skopin II, Otarov AM, Kakhktsyan PV, et al. Aortic valve replacement in elderly and advanced age patients: analysis of preoperative risk factors. Complex problems of cardiovascular diseases. 2019;7(4S):24-35. (In Russ.) doi:10.17802/2306-1278-2018-7-4S-24-35.

33. Balsam LB, Grossi EA, Greenhouse DG, et al. Reoperative valve surgery in the elderly: Predictors of risk and long-term survival. Ann Thorac Surg. 2010;90(4):1195-200. doi:10.1016/j.athoracsur.2010.04.057.

34. Kaneko T, Vassileva CM, Englum B, et al. Contemporary outcomes of repeat aortic valve replacement: A benchmark for transcatheter valve-in-valve procedures. Ann Thorac Surg. 2015;100(4):1298-304. doi:10.1016/j.athoracsur.2015.04.062.

35. Jones JM, O’kane H, Gladstone DJ, et al. Repeat heart valve surgery: risk factors for operative mortality. J Thorac Cardiovasc Surg. 2001;122(5):913-8. doi:10.1067/mtc.2001.116470.

36. Sobolev Yu A, Medvedev AP. Causes and results of valve replacement in congenital heart disease. Bulletin of new medical technologies. 2015;9(3):23. (In Russ.) doi:10.12737/13366.

37. Ivanov VA, Gavrilenko AV, M’ĭo SKh, et al. Repeated heart valve surgery (review). Kardiologiya i Serdechno-Sosudistaya Khirurgiya. 2015;8(2):49-53. (In Russ.) doi:10.17116/kardio20158249.

38. Leontyev S, Borger MA, Davierwala P, et al. Redo aortic valve surgery: Early and late outcomes. Ann Thorac Surg. 2011; 91(4):1120-6. doi:10.1016/j.athoracsur.2010.12.053.

39. Campanella C, Hider CF, Duncan AJ, et al. Must the mitral valve always be removed during prosthetic replacement? Ann Thorac Surg. 1990;49:167-8.

40. Raffa H, Al-Ibrahim K, Sorefan AA, et al. Superimposition of a mechanical valve on an impacted aortic bioprosthesis. Texas Heart Inst J. 1991;19(3):244.

41. Tamura Y, Kawata T, Kameda Y, et al. Re-do mitral valve replacement using the valve-on-valve technique: a case report. Ann Thorac Cardiovasc Surg. 2005;11(2):125-7.

42. Santana O, Tarrazzi FA, Lamelas J. Minimally Invasive Mitral Valve Replacement Using the Valve-in-valve Technique. Innovations (Phila). 2009;4(4):221-4. doi:10.1097/IMI.0b013e3181b02871.

43. Furukawa T, Komiya T, Tamura N, et al. Replacement of a Degenerated Mitral Bioprosthesis Using a Valve-on-Valve Technique. Jpn J Cardiovasc Surg. 2007;36(1):58-62. doi:10.4326/jjcvs.36.58.

44. Klyshnikov KYu, Ovcharenko EA, Stasev AN, et al. Experimental substantiation of the design of a prosthetic heart valve for "valvein-valve" implantation. Russian Journal of Transplantology and Artificial Organs. 2017;19(2):69-77. (In Russ.) doi:10.15825/19951191-2017-2-69-77.

45. Klyshnikov KY, Ovcharenko EA, Batranin AV, et al. Компьютерное моделирование течения жидкости через биопротез клапана сердца. Mathematical Biology and Bioinformatics. 2018;13(2):338-47. (In Russ.) doi:10.17537/2018.13.337.

46. Inoue Y, Kotani S, Suzuki S. Chimney technique for aortic valve-on-valve replacement. J Thorac Cardiovasc Surg. 2018; 155(1):68-9. doi:10.1016/j.jtcvs.2017.07.085.

47. Haverich A, Wahlers TC, Borger MA, et al. Three-year hemodynamic performance, left ventricular mass regression, and prosthetic-patient mismatch after rapid deployment aortic valve replacement in 287 patients. J Thorac Cardiovasc Surg. 2014;148(6):2854-60. doi:10.1016/j.jtcvs.2014.07.049.

48. Laborde F, Fischlein T, Hakim-Meibodi K, et al. Clinical and haemodynamic outcomes in 658 patients receiving the Perceval sutureless aortic valve: early results from a prospective Euro¬pean multicentre study (the Cavalier Trial). Eur J Cardio-Thorac Surg. 2016;49(3):978-86. doi:10.1093/ejcts/ezv257.

49. Dohmen PM, Lehmkuhl L, Borger MA, et al. Valve-in-Valve Replacement Using a Sutureless Aortic Valve. Am J Case Rep. 2016;17:699-702. doi:10.12659/ajcr.899374.

50. Chiariello GA, Villa E, Messina A, et al. Perceval valve-invalve implant for full root xenograft failure. J Card Surg. 2017;32(9):567-70. doi:10.1111/jocs.13199.

51. Klyshnikov KU, Ovcharenko EA, Stasev AN, et al. In vitro study of a biological prosthetic valve for seamless fixation. Russian Journal of Transplantology and Artificial Organs. 2017;19(4):61-9. (In Russ.) doi:10.15825/1995-11912017-4-61-69.

52. Dasi LP, Hatoum H, Kheradvar A, et al. On the Mechanics of Transcatheter Aortic Valve Replacement. Ann Biomed Eng. 2017;45(2):310-31. doi:10.1007/s10439-016-1759-3.

53. Wendt D, Al-Rashid F, Kahlert P, et al. Conventional aortic valve replacement or transcatheter aortic valve implantation in patients with previous cardiac surgery. J Cardiol. 2015;66(4):292-7. doi:10.1016/j.jjcc.2015.04.003.

54. Takagi H, Mitta S, Ando T. Meta-analysis of Valve-in-Valve Transcatheter versus Redo Surgical Aortic Valve Replacement. Thorac Cardiovasc Surg. 2019;67(4):243-50. doi:10.1055/s-0038-1668135.

55. Ole DB, Lars S. Redo-TAVR: What About the Coronary Arteries? JACC Cardiovasc Interv. 2020;13(22):2628-30. doi:10.1016/j.jcin.2020.10.005.

56. Bernardi FLM, Dvir D, Rodes-Cabau J, et al. Valve-in-Valve Challenges: How to Avoid Coronary Obstruction. Front Cardiovasc Med. 2019;6:1-8. doi:10.3389/fcvm.2019.00120.

57. Dvir D, Webb J, Brecker S, et al. Transcatheter Aortic Valve Replacement for Degenerative Bioprosthetic Surgical Valves. Circulation. 2012;126(19):2335-44. doi:10.1161/CIRCULATIONAHA.112.104505.

58. Duncan A, Moat N, Simonato M, et al. Outcomes Following Transcatheter Aortic Valve Replacement for Degenerative Stentless Versus Stented Bioprostheses. JACC Cardiovasc Interv. 2019;12(13):1256-63. doi:10.1016/j.jcin.2019.02.036.

59. Noorani A, Attia R, Bapat V. Valve-in-valve procedure: importance of the anatomy of surgical bioprostheses. Multimed Man CardioThorac Surg. 2014;2014:mmu020. doi:10.1093/mmcts/mmu020.

60. Zenses A-S, Dahou A, Salaun E, et al. Haemodynamic outcomes following aortic valve-in-valve procedure. Open Hear. 2018;5(2):e000854. doi:10.1136/openhrt-2018-000854.


Supplementary files

What is already known about the subject?

  • Bioprosthetic heart valves are subject to structural degeneration, which leads to the inevitable need for reintervention.
  • The methods and techniques of reinterventions are diverse and represent a wide range of tools for the treatment of dysfunction — from surgical to mini­mally invasive and transcatheter devices.

What might this study add?

  • The valve-in-valve procedure using a sutural me­thod has a low efficiency and high complexity, which makes it inappropriate.
  • The sutureless repeated valve replacement can become a valuable alternative to open interventions due to its shorter duration and less injury. However, the number of available devices for this method is significantly limited.

Review

For citations:


Klyshnikov K.Yu., Ovcharenko E.A., Stasev A.N., Barbarash L.S. Repeated valve replacement: approaches and devices (literature review). Cardiovascular Therapy and Prevention. 2023;22(2):3377. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3377

Views: 4016


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)