Preview

Cardiovascular Therapy and Prevention

Advanced search

Cryostorage of peripheral blood hematopoietic stem cells in transplantology: current status and prospects

https://doi.org/10.15829/1728-8800-2023-3691

Abstract

Peripheral blood hematopoietic stem cell (HSC) transplantation is a well-established procedure for the treatment of hematological, cancer and autoimmune diseases. In cancer patients, HSC transplantation allows the use of high-dose cytotoxic drugs in combination with radiation therapy during treatment, which provides a pronounced antitumor effect. The hematological toxicity of such treatment is eliminated by the sequential introduction of stem cells, which contribute to hematopoiesis restoration. Before transplantation, peripheral blood HSCs are subjected to collection and cryopreservation for further storage. An important requirement for cryopreservation is viable HSCs responsible for hematopoietic restoration. The aim of the review was to analyze the literature devoted to the influence of various methods of cryopreservation of human peripheral blood HSCs on the preservation of cell viability after thawing, as well as the development of adverse events in patients. Issues related to the use of various cryoprotectants, as well as methods for storing HSC grafts, are considered. The presented data indicate the need for further study of the effect of cryoprotectants on the human body and the cellular composition of the graft and improvement of protocols for HSC cryopreservation.

About the Authors

O. I. Kit
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



N. V. Gnennaya
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



S. Yu. Filippova
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



T. V. Chembarova
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



I. B. Lysenko
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



I. A. Novikova
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



L. Ya. Rozenko
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



S. N. Dimitriadi
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



E. V. Shalashnaya
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



O. G. Ishonina
National Medical Research Center of Oncology
Russian Federation

Rostov­on­ Don



References

1. Balassa K, Danby R, Rocha V. Haematopoietic stem cell transplants: principles and indications. Br J Hosp Med (Lond). 2019; 80(1):33­9. doi:10.12968/hmed.2019.80.1.33.

2. Afanasiev BV, Zubarovskaya LS, Alyanskiy AL, et al. Selection of donor of allogeneic hematopoietic stem cell transplantation. Rus sian Journal of Pediatric Hematology and Oncology. 2016; 3(3):30­6. (In Russ.) doi:10.15829/1560­4071­2011­6­4­8.

3. Firsova MV, Mendeleeva LP, Parovichnikova EN, et al. Allogeneic hematopoietic stem cell transplantation in patients with multiple myeloma. Terapevticheskii Arkhiv. 2021;93(7):778­84. (In Russ.) doi:26442/00403660.2021.07.200929.

4. Adra N, Abonour R, Althouse SK, et al. High­ Dose Chemotherapy and Autologous Peripheral­ Blood Stem­ Cell Transplantation for Relapsed Metastatic Germ Cell Tumors: The Indiana University Experience. J Clin Oncol. 2017;35(10):1096­102. doi:10.1200/jCO.2016.69.5395.

5. Laurence V, Pierga JY, Barthier S, et al. Long­term follow up of high­dose chemotherapy with autologous stem cell rescue in adults with Ewing tumor. Am J Clin Oncol. 2005;28(3):301­9. doi:10.1097/01.coc.0000156921.28880.e1.

6. Gajjar A, Chintagumpala M, Ashley D, et al. Risk­adapted craniospinal radiotherapy followed by high­dose chemotherapy and stem­cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma­96): long­term results from a prospective, multicentre trial. Lancet Oncol. 2006;7(10):813­20. doi:10.1016/S1470­2045(06)70867­1.

7. Sureda A, Bader P, Cesaro S, et al. Indications for allo­ and auto­ SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 2015;50(8):1037­56. doi:10.1038/bmt.2015.6.

8. Copelan EA. Hematopoietic stem­cell transplantation. N Engl J Med. 2006;354(17):1813­26. doi:10.1056/NEJMra052638.

9. Keever­Taylor CA. Immune Reconstitution after Allogeneic Transplan tation. HSCT. 2008;377­420. doi:10.1007/978­1­59745438­4_18.

10. Miller JP, Perry EH, Price TH, et al. Recovery and Safety Profiles of Marrow and PBSC Donors: Experience of the National Marrow Donor Program. Biol Blood Marrow Transplant. 2008;14(9):2936. doi:10.1016/j.bbmt.2008.05.018.

11. Stem Cell Trialists' Collaborative Group. Allogeneic peripheral blood stem­cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta­analysis of nine randomized trials. J Clin Oncol. 2005;23(22):5074­87. doi:10.1200/JCO.2005.09.020.

12. Friedrichs B, Tichelli A, Bacigalupo A, et al. Long­term outcome and late effects in patients transplanted with mobilised blood or bone marrow: a randomised trial. Lancet Oncol. 2010;11(4):3318. doi:10.1016/S1470­2045(09)70352­3.

13. Sugiyanto M, Gosal S, Kosim A, et al. Impact of the source of hematopoietic stem cells on immune reconstitution after transplantation: A systematic review. Eur J Haematol. 2023;111(1):4­14. doi:10.1111/ejh.13966.

14. Mohanna A, Owaidah A, Albahrani A, et al. Validation of longterm handling and storage conditions for hematopoietic stem cell products for autologous transplants. J Med Life. 2023;16(4):5159. doi:10.25122/jml­2022­0230.

15. Gal'tseva IV, Davydova YuO, Gaponova TV, et al. Absolute numbers of peripheral blood CD34+ hematopoietic stem cells prior to a leukapheresis procedure as a parameter predicting the efficiency of stem cell collection. Terapevticheskii Arkhiv. 2017;89(7):18­24. (In Russ.) doi:10.17116/terarkh201789718­24.

16. D’Rozario J, Parisotto R, Stapleton J, et al. Pre infusion, post thaw CD34+ peripheral blood stem cell enumeration as a predictor of haematopoietic engraftment in autologous haematopoietic cell transplantation. Transfus Apher Sci. 2014;50(3):443­50. doi:10.1016/j.transci.2014.02.021.

17. Chang Y­J, Huang X­J. Donor lymphocyte infusions for relapse after allogeneic transplantation. When, if and for whom? Blood Rev. 2013;27(1):55­62. doi:10.1016/j.blre.2012.11.002.

18. Araújo AB, Salton GD, Angeli MH, et al. Effects of cell concentration, time of fresh storage, and cryopreservation on peripheral blood stem cells. Transfus Apher Sci. 2022;61(1):103298. doi:10.1016/j.transci.2021.103298.

19. Dijkstra­ Tiekstra MJ, Setroikromo AC, Kraan M, et al. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor­ phase or liquid nitrogen on in vitro white blood cell quality. Transfusion. 2014;54(12):3155­63. doi:10.1111/trf.12756.

20. Wu L, Al­ Hejazi A, Filion L, et al. Increased apoptosis in cryopreserved autologous hematopoietic progenitor cells collected by apheresis and delayed neutrophil recovery after transplantation: a nested case­control study. Cytotherapy. 2012;14(2):205­14. doi: 10.3109/14653249.2011.610302.

21. Mazur P, Leibo SP, Chu EHY. A two­factor hypothesis of freezing injury. Exp Cell Res. 1972;71(2):345­55. doi:10.1016/00144827(72)90303­5.

22. Arora S, Setia R, Handoo A, et al. Outcome of 51 autologous peripheral blood stem cell transplants after uncontrolled­rate freezing ("dump freezing") using −80°C mechanical freezer. Asian J Transfus Scie. 2018;12(2):117. doi:10.4103/ajts.ajts_42_17.

23. Calvet L, Cabrespine A, Boiret­ Dupré N, et al. Hematologic, immunologic reconstitution, and outcome of 342 autologous peripheral blood stem cell transplantations after cryopreservation in a ­80°C mechanical freezer and preserved less than 6 months. Transfusion. 2013;53(3):570­8. doi:10.1111/j.15372995.2012.03768.x.

24. Detry G, Calvet L, Straetmans N, et al. Impact of uncontrolled freezing and long­term storage of peripheral blood stem cells at ­80° C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transplant. 2014;49(6):780­5. doi:10.1038/bmt.2014.53.

25. Wang M, Karlsson JOM, Aksan A. FTIR Analysis of Molecular Changes Associated with Warming Injury in Cryopreserved Leukocytes. Langmuir. 2018;35(23):7552­9. doi:10.1021/acs.langmuir.8b02982.

26. Zubairov RR, Korotayev YeV, Rabinovich VI. Cryopreservation and cryogenic storage of hemopoietic stem cells. HIV Infection and Immunosuppressive Disorders. 2011;3(2):39­48. (In Russ.)

27. Gurtovenko AA, Anwar J. Modulating the Structure and Properties of Cell Membranes: The Molecular Mechanism of Action of Dimethyl Sulfoxide. J Phys Chem B. 2007;111(35):10453­60. doi:10.1021/jp073113e.

28. Hornberger K, Yu G, McKenna D, Hubel A. Cryopreservation of Hematopoietic Stem Cells: Emerging Assays, Cryoprotectant Agents, and Technology to Improve Outcomes. Transfus Med Hemotherapy. 2019;46(3):188­96. doi:10.1159/000496068.

29. Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2013;49(4):46976. doi:10.1038/bmt.2013.152.

30. Mancías­ Guerra C, Sánchez­ García SA, Carreño­ Salcedo SA, et al. Dimethyl sulfoxide toxicity in umbilical cord blood transplantation in patients less than 4.5 kilos of weigh. Hematology, Transfus Cell Therapy. 2023;45(1):1­4. doi:10.1016/j.htct.2021.04.009.

31. Marcacci G, Corazzelli G, Becchimanzi C, et al. DMSO­associated encephalopathy during autologous peripheral stem cell infusion: a predisposing role of preconditioning exposure to CNSpenetrating agents? Bone Marrow Transplant. 2009;44(2):133­5. doi:10.1038/bmt.2008.442.

32. Ataseven E, Tüfekçi Ö, Yilmaz Ş, et al. Neurotoxicity Associated With Dimethyl Sulfoxide Used in Allogeneic Stem Cell Transplantation. J Pediatr Hematol Oncol. 2017;39(5):e297­9. doi:10.1097/MPH.0000000000000784.

33. Windrum P, Morris TCM, Drake MB, et al. Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant. 2005;36(7):601­3. doi:10.1038/sj.bmt.1705100.

34. Júnior A, Arrais C, Saboya R, et al. Neurotoxicity associated with dimethylsulfoxide­ preserved hematopoietic progenitor cell infusion. Bone Marrow Transplant. 2008;41:95­6. doi:10.1038/Sj.bmt.1705883.

35. González­ López T, Sánchez­ Guijo F, Ortín A, et al. Ischemic stroke associated with the infusion of DMSO­cryopreserved auto­ PBSCs. Bone Marrow Transplant. 2011;46:1035­6. doi:10.1038/bmt.2010.242.

36. Mitrus I, Smagur A, Fidyk W, et al. Reduction of DMSO concentration in cryopreservation mixture from 10% to 7.5% and 5% has no impact on engraftment after autologous peripheral blood stem cell transplantation: results of a prospective, randomized study. Bone Marrow Transplant. 2017;53(3):274­80. doi:10.1038/s41409­017­0056­6.

37. Mitrus I, Smagur A, Giebel S, et al. A faster reconstitution of hematopoiesis after autologous transplantation of hematopoietic cells cryopreserved in 7.5% dimethyl sulfoxide if compared to 10% dimethyl sulfoxide containing medium. Cryobiology. 2013;67(3):327­31. doi:10.1016/j.cryobiol.2013.09.167.

38. Smagur A, Mitrus I, Giebel S, et al. Impact of different dimethyl sulphoxide concentrations on cell recovery, viability and clonogenic potential of cryopreserved peripheral blood hematopoietic stem and progenitor cells. Vox Sanguinis. 2013;104:240­7. doi:10.1111/j.1423­0410.2012.01657.x.

39. Foïs E, Desmartin M, Benhamida S, et al. Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant. 2007;40(9):831­5. doi:10.1038/sj.bmt.1705830.

40. Akkök ÇA, Holte MR, Tangen JM, et al. Hematopoietic engraftment of dimethyl sulfoxide­ depleted autologous peri pheral blood progenitor cells. Transfusion. 2009;49(2):354­61. doi:10.1111/j.1537­2995.2008.01949.x.

41. Smagur A, Mitrus I, Ciomber A, et al. Comparison of the cryoprotective solutions based on human albumin vs. autologous plasma: its effect on cell recovery, clonogenic potential of peripheral blood hematopoietic progenitor cells and engraft ment after autologous transplantation. Vox Sanguinis. 2015;108(4): 417­24. doi:10.1111/vox.12238.

42. Jeyaraman P, Borah P, Dayal N, et al. Adequate Engraftment With Lower Hematopoietic Stem Cell Dose. Clin Lymphoma Myeloma Leuk. 2020;20(4):260­3. doi:10.1016/j.clml.2019.12.018.

43. Fernandez­ Sojo J, Cid J, Azqueta C, et al. Post thawing viable CD34+ Cells dose is a better predictor of clinical outcome in lymphoma patients undergoing autologous stem cell transplantation. Bone Marrow Transplant. 2022;57(8):1341­3. doi:10.1038/S41409­022­01722­6.

44. Watts MJ, Linch DC. Optimisation and quality control of cell processing for autologous stem cell transplantation. Br J Haematol. 2016;175(5):771­83. doi:10.1111/bjh.14378.

45. Veeraputhiran M, Theus JW, Pesek G, et al. Viability and engraftment of hematopoietic progenitor cells after long­term cryopreservation: effect of diagnosis and percentage dimethyl sulfoxide concentration. Cytotherapy. 2010;12(6):764­6. doi:10.3109/14653241003745896.

46. Abrahamsen JF, Bakken AM, Bruserud Ø. Cryopreserving human peripheral blood progenitor cells with 5‐percent rather than 10percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion. 2002;42(12):1573­80. doi:10.1046/j.15372995.2002.00242.x.

47. Balashova VA, Rugal’ VI, Bessmeltsev SS, et al. Correlation of CD34+ Hematopoietic Stem Cells and CFU in Peripheral Blood Apheresis Products in Patients with Malignant Lymphoproliferative Diseases Before and After Cryopreservation Prior to auto­ HSCT. Clinical oncohematology. 2018;11(4):368­77. (In Russ.) doi:10.21320/2500­2139­2018­11­4­368­377.

48. Pal R, Mamidi MK, Das AK, et al. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch Toxicol. 2011;86(4):651­61. doi:10.1007/s00204­0110782­2.

49. Katkov II, Kim MS, Bajpai R, et al. Cryopreservation by slow cooling with DMSO diminished production of Oct­4 pluripotency marker in human embryonic stem cells. Cryobiology. 2006;53(2):194­205. doi:10.1016/j.cryobiol.2006.05.005.

50. Iwatani M, Ikegami K, Kremenska Y, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24(11):2549­56. doi:10.1634/stemcells.2005­0427.

51. Kaushal R, Jahan S, McGregor C, et al. Dimethyl sulfoxide­free cryopreservation solutions for hematopoietic stem cell grafts. Cytotherapy. 2022;24(3):272­81. doi:10.1016/j.jcyt.2021.09.002.

52. Wu LK, Tokarew JM, Chaytor JL, et al. Carbohydrate­ mediated inhibition of ice recrystallization in cryopreserved human umbilical cord blood. Carbohydr Res. 2011;346(1):86­93. doi:10.1016/j.carres.2010.10.016.

53. Petrenko YA, Jones DR, Petrenko AY. Cryopreservation of human fetal liver hematopoietic stem/progenitor cells using sucrose as an additive to the cryoprotective medium. Cryobiology. 2008;57(3):195­200. doi:10.1016/j.cryobiol.2008.08.003.

54. Motta JPR, Paraguassú­ Braga FH, Bouzas LF, et al. Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology. 2014;68(3):343­8. doi:10.1016/j.cryobiol.2014.04.007.

55. Svalgaard JD, Haastrup EK, Reckzeh K, et al. Low‐molecularweight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells. Transfusion. 2016;56(5):1088­95. doi:10.1111/trf.13543.

56. Klotz U, Kroemer H. Clinical pharmacokinetic considerations in the use of plasma expanders. Clin Pharmacokinet. 1987;12(2): 123­35. doi:10.2165/00003088­198712020­00003.

57. Briard JG, Jahan S, Chandran P, et al. Small­ Molecule Ice Recrystallization Inhibitors Improve the Post­ Thaw Function of Hematopoietic Stem and Progenitor Cells. ACS Omega. 2016; 1(5):1010­8. doi:10.1021/acsomega.6b00178.

58. Yoshida K, Ono F, Chouno T, et al. Creation of a novel lipid­ trehalose derivative showing positive interaction with the cell membrane and verification of its cytoprotective effect during cryopreservation. J Biosci Bioeng. 2021;132(1):71­80. doi:10.1016/j.jbiosc.2021.03.010.


Supplementary files

What is already known about the subject?

  • The toxicity of dimethyl sulfoxide dictates the need to search for novel cryoprotective agents.

What might this study add?

  • Literary data on methods for reducing the nega­tive effect of dimethyl sulfoxide on the cellular composition of a transplant are presented. Agents preserving the viability of hematopoietic stem cells are described and can be considered as potential cryoprotectants for widespread use in trans­plan­tation.

Review

For citations:


Kit O.I., Gnennaya N.V., Filippova S.Yu., Chembarova T.V., Lysenko I.B., Novikova I.A., Rozenko L.Ya., Dimitriadi S.N., Shalashnaya E.V., Ishonina O.G. Cryostorage of peripheral blood hematopoietic stem cells in transplantology: current status and prospects. Cardiovascular Therapy and Prevention. 2023;22(11):3691. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3691

Views: 1511


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)