Algorithm for non-invasive diagnosis of obliterating coronary atherosclerosis based on imaging and laboratory markers
https://doi.org/10.15829/1728-8800-2023-3698
EDN: QWCCQD
Abstract
Aim. Using the ultrasound characteristics of the carotid and femoral arteries and a number of laboratory blood parameters, develop an algorithm for non-invasive diagnosis of coronary atherosclerosis.
Material and methods. The study included 216 patients (53% men) aged 24-87 years (mean age, 61,5±10,73 years) who were admitted and examined in the hospital of the National Medical Research Center for Therapy and Preventive Medicine in the period of 2016-2019. All patients underwent diagnostic coronary angiography, duplex carotid and femoral ultrasound and biochemical blood tests. In accordance with coronary angiography, 3 groups of patients were formed: 1) without coronary atherosclerosis, 2) with subclinical and 3) severe coronary atherosclerosis, the examination results of which formed the basis of the developed diagnostic algorithm.
Results. A stepwise algorithm for non-invasive detection of coronary atherosclerosis has been developed, which includes biochemical blood tests at stage I (glucose, high-sensitivity C-reactive protein, creatinine and adiponectin), a visual scale (VS) at stage II, a combination of clinical and paraclinical parameters (Celermajer test and left atrium antero-posterior diameter) at stage III and allows to identify patients with varying degrees of coronary onvolvement (including subclinical). The sequential passage of algorithm steps by the patient increases the detection rate of coronary atherosclerosis of any degree by 12,2 times, and by 13,8 times in case of severe involvement.
Conclusion. To rationale the use of a combined panel of available investigations, presented as a stepwise diagnostic algorithm, the proposed algorithm should be validated on an independent cohort or in prospective observation of the initial cohort of patients.
About the Authors
O. M. DrapkinaRussian Federation
Moscow
V. A. Metelskaya
Russian Federation
Moscow
M. V. Dubinskaya
Russian Federation
Moscow
E. B. Yarovaya
Russian Federation
Moscow
References
1. McNamara K, Alzubaidi C, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019;8:1-11. doi:10.2147/IPRP.S133088.
2. Boytsov SA, Demkina AE, Oshchepkova EV, Dolgusheva Yu A. Progress and Problems of Practical Cardiology in Russia at the Present Stage. Kardiologiia. 2019;59(3):53-9. (In Russ.) doi:10.18087/cardio.2019.3.10242.
3. Virani SS, Alonso A, Aparicio HJ, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation. 2021;143:e254-e743. doi:10.1161/cir.0000000000000950.
4. Drapkina OM, Kontsevaya AV, Kalinina AM, et al. 2022 Prevention of chronic non-communicable diseases in the Russian Federation. National guidelines. Cardiovascular Therapy and Prevention. 2022;21(4):3235. (In Russ.) doi:10.15829/1728-8800-2022-3235. EDN DNBVAT.
5. Vasan RS. Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation. 2006;7;113:2335-62. doi:10.1161/circulationaha.104.482570.
6. Ghantous CM, Kamareddine L, Farhat R, et al. Advances in Cardiovascular Biomarker Discovery. Biomedicines. 2020;8:552. doi:10.3390/biomedicines8120552.
7. Gilstrap LG, Wang TJ. Biomarkers and Cardiovascular Risk Assessment for Primary Prevention: An Update. Clin Chem. 2012;58:72-82. doi:10.1373/clinchem.2011.165712.
8. Roberts LD, Gerszten RE. Toward New Biomarkers of Cardiometabolic Diseases. Cell Metab. 2013;18:43-50. doi:10.1016/j.cmet.2013.05.009.
9. Brown TM, Bittner V. Biomarkers of atherosclerosis: clinical applications. Curr Cardiol Rep. 2008;10(6):497-504. doi:10.1007/s11886-008-0078-1.
10. Metelskaya VA, Gavrilova NE, Gumanova NG, et al. Combination of Visual and Metabolic Markers in Assessment of Probability of Presence and Severity of Atherosclerosis of Coronary Arteries. Kardiologiia. 2016;56(7):47-53. (In Russ). doi:10.18565/cardio.7.47-53.
11. Metelskaya VA. Multimarker diagnostic panels for atherosclerosis. Russian Journal of Cardiology. 2018;(8):65-73. (In Russ.) doi:10.15829/1560-4071-2018-8-65-73.
12. Lubrano VS, Balzan S. Status of biomarkers for the identification of stable or vulnerable plaques in atherosclerosis. Clin Sci (Lond). 2021;135(16):1981-97. doi:10.1042/CS20210417.
13. Helfand M, Buckley D I, Freeman M, et al. Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U. S. Preventive Services Task Force. Ann Intern Med. 2009;151(7):496-507. doi:10.7326/0003-4819-151-7-200910060-00010.
14. Gavrilova E, Zhatkina MV, Metelskaya VA, et al. Assessment methods and possibilities of instrumental diagnosis of subclinical atherosclerosis of coronary arteries. Cardiovascular Therapy and Prevention. 2019;18(6):136-41. (In Russ). doi:10.15829/1728-8800-2019-6-136-141.
15. Cournot M, Bura A, Cambou J-P, et al. Arterial Ultrasound Screening as a Tool for Coronary Risk Assessment in Asymptomatic Men and Women. Angiology. 2012;63(4):282-8. doi:1177/0003319711414865.
16. Gavrilova NE, Metelskaya VA, Perova NV, et al. Association between the degree of coronary atherosclerosis, risk factors, and markers of carotid and peripheral artery atherosclerosis. Cardiovascular Therapy and Prevention. 2013;12(1):40-5. (In Russ.) doi:10.15829/1728-8800-2013-1-40-45.
17. Gepner AD, Young R, Delaney JA, et al. Comparison of Coronary Artery Calcium Presence, Carotid Plaque Presence, and Carotid Intima-Media Thickness for Cardiovascular Disease Prediction in the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging. 2015;8(1):e002262. doi:10.1161/CIRCIMAGING.114.002262.
18. Barbarash OL, Kashtalap VV. Do the patients with peripheral atherosclerosis need to a medical therapy before the revascularization? Therapeutic Archive. 2019;91(12):129-34. (In Russ). doi:10.26442/00403660.2019.12.000498.
19. Ershova AI, Boytsov SА, Drapkina ОМ, Balakhonova ТV. Ultrasound markers of premanifest atherosclerosis of carotid and femoral arteries in assessment of cardiovascular risk. Russian Journal of Cardiology. 2018;(8):92-8. (In Russ.) doi:10.15829/1560-4071-2018-8-92-98.
20. Grubic N, Colledanchise KN, Liblik K, Johri AM. The Role of Carotid and Femoral Plaque Burden in the Diagnosis of Coronary Artery Disease. Curr Cardiol Rep. 2020;22(10):121. doi:10.1007/s11886-020-01375-1.
21. Colledanchise KN, Mantella LE, Hétu MF, et al. Femoral plaque burden by ultrasound is a better indicator of significant coronary artery disease over ankle brachial index. Int J Cardiovasc Imaging. 2021;37(10):2965-73. doi:10.1007/s10554-021-02334-9.
22. Singh SS, Pilkerton CS, Shrader CD, et al. Subclinical atherosclerosis, cardiovascular health, and disease risk: is there a case for the Cardiovascular Health Index in the primary prevention population? BMC Public Health. 2018;18(1):429. doi:10.1186/s12889-018-5263-6.
23. Zhatkina MV, Gavrilova NE, Makarova YuK, et al. Diagnosis of multifocal atherosclerosis using the Celermajer test. Cardiovascular Therapy and Prevention. 2020;19(5):2638. (In Russ.) doi:10.15829/1728-8800-2020-2638.
24. Metelskaya VA, Gavrilova NЕ, Yarovaya ЕB, Boytsov SA. An integrative biomarker: opportunities for non-invasive diagnostics of coronary atherosclerosis. Russian Journal of Cardiology. 2017;(6):132-8. (In Russ.) doi:10.15829/1560-4071-2017-6-132-138.
25. Judkins MP. Selective Coronary Arteriography. Part I: A Percutaneous Transfemoral Technic. Radiology. 1967;89(5):815. doi:10.1148/89.5.815.
26. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Russian Journal of Cardiology. 2020;25(2):3757. (In Russ.) 2019 Рекомендации ЕSC по диагностике и лечению хронического коронарного синдрома. Российский кардиологический журнал. 2020;25(2):3757. doi:10.15829/1560-4071-2020-2-3757.
27. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Russian Journal of Cardiology. 2018;(8):164-221. (In Russ.) doi:10.15829/1560-4071-2018-8-164-221.
28. Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111-5. doi:10.1016/01406736(92)93147-f.
29. Zhatkina MV, Gavrilova NE, Metelskaya VA, et al. Visual Scale as a Non-Invasive Method for Evaluation of Risk and Severity of Coronary Atherosclerosis. Kardiologiia. 2021;61(4):46-52. (In Russ.) doi:10.18087/cardio.2021.4.n1481.
30. Zhatkina MV, Metelskaya VA, Gavrilova NE, et al. Biochemical markers of coronary atherosclerosis: building models and assessing their prognostic value regarding the lesion severity. Russian Journal of Cardiology. 2021;26(6):4559. (In Russ.) doi:10.15829/1560-4071-2021-4559.
31. Wang TJ. Assessing the Role of Circulating, Genetic, and Imaging Biomarkers in Cardiovascular Risk Prediction. Circulation. 2011;123:551-65. doi:10.1161/circulationaha.109.912568.
32. Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular Risk Prediction Models and Scores in the Era of Personalized Medicine. J Pers Med. 2022;12(7):1180. doi:10.3390/jpm12071180.
33. Metelskaya VA, Gavrilova NE, Zhatkina MV, et al. A Novel Integrated Biomarker for Evaluation of Risk and Severity of Coronary Atherosclerosis, and Its Validation. J Pers Med. 2022;12:1-10. doi:10.3390/jpm12020206.
34. Hoefer IE, Steffens S, Ala-Korpela M, et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J. 2015;36:2635-42. doi:10.1093/eurheartj/ehv236.
35. Cui J. Overview of risk prediction models in cardiovascular disease research. Ann Epidemiol. 2009;19(10):711-7. doi:10.1016/j.annepidem.2009.05.005.
36. Rossello X, Dorresteijn JA, Janssen A, et al. Risk prediction tools in cardiovascular disease prevention: A report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur Heart J Acute Cardiovasc Care. 2019;26(14):1534-44. doi:10.1177/2048872619858285.
37. Owen DRJ, Lindsay AC, Choudhury RP, Fayad ZA. Imaging of Atherosclerosis. Annu Rev Med. 2011;62:25-40. doi:10.1146/annurev-med-041709-133809.
What is already known about the subject?
- A variety of scales, schemes and algorithms have been proposed that allow predicting the risk of occurrence and progression of atherosclerotic cardiovascular diseases in various population groups with varying degrees of probability.
- The results of clinical and paraclinical studies as independent markers showed their moderate effectiveness in verifying coronary atherosclerosis and a very low ability in detecting subclinical involvement.
What might this study add?
- The potential of using a combination of clinical and paraclinical markers to detect coronary artery atherosclerosis presence and severity was shown.
- A 5-step algorithm for non-invasive assessment of coronary atherosclerosis probability has been developed, the use of which makes it possible to differentiate patients with and without coronary atherosclerosis and stratify them depending on its severity.
Review
For citations:
Drapkina O.M., Metelskaya V.A., Dubinskaya M.V., Yarovaya E.B. Algorithm for non-invasive diagnosis of obliterating coronary atherosclerosis based on imaging and laboratory markers. Cardiovascular Therapy and Prevention. 2023;22(8):3698. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3698. EDN: QWCCQD