Preview

Cardiovascular Therapy and Prevention

Advanced search

Booster vaccination against the SARS-CoV-2: mechanisms and efficiency

https://doi.org/10.15829/1728-8800-2023-3820

EDN: WQJMTR

Abstract

Coronavirus disease 2019 (COVID-19) pandemic was not only a serious challenge for the healthcare system around the world, but also an incentive for intensive research and development for the introduction of innovative technologies and drugs, in particular vaccines against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2). The first vaccination campaigns provided significant protection against severe disease course and hospitalization. However, new SARS-COV-2 variants require further comprehensive research and the introduction of booster vaccination. Booster vaccination is the most important tool for immunostimulation and increase of protection duration against the severe disease course. The study of booster vaccines, including BioNTech/Pfizer, Moderna, Oxford AstraZeneca, Sputnik V, Sinopharm и Covaxin vaccines, sheds light on their unique action mechanisms and contribution to long-term immunity. The analysis of clinical data demonstrates their effectiveness and safety. The review summarizes modern knowledge about booster vaccinations against the COVID-19 with focus on action mechanisms and efficiency. In addition, the immune system function in response to COVID-19 is considered, while the role of memory cells, antibody and cellular immunity reactions are emphasized.

About the Authors

S. A. Berns
National Medical Research Center for therapy and Preventive Medicine
Russian Federation

Moscow



A. V. Veremeyev
National Medical Research Center for therapy and Preventive Medicine
Russian Federation

Moscow



A. A. Savicheva
National Medical Research Center for therapy and Preventive Medicine
Russian Federation

Moscow



A. Yu. Gorshkov
National Medical Research Center for therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for therapy and Preventive Medicine
Russian Federation

Moscow



References

1. De Ceukelaire W, Bodini C. We Need Strong Public Health Care to Contain the Global Corona Pandemic. Int J Health Serv. 2020;50(3):276-77. doi:10.1177/0020731420916725.

2. Stupak VS, Zubko AV, Manoshkina EM, et al. Healthcare in Russia during the COVID-19 pandemic: challenges, systemic issues, and addressing priorities. Profilakticheskaya Meditsina. 2022;25(11):21-7. (In Russ.) doi:10.17116/profmed20222511121.

3. Timerbulatov VM, Timerbulatov MV. Health care during and after COVID-19. Vestnik Akademii nauk Respubliki Bashkortostan. 2020;35(2-98):77-86. (In Russ.) doi:10.24411/1728-5283-2020-10209.

4. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516-27. doi:10.1038/s41586-020-2798-3.

5. Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-97. doi:10.1016/S0140-6736(20)31866-3.

6. Chen J, Wang R, Wang M, et al. Mutations Strengthened SARS-CoV-2 Infectivity. J Mol Biol. 2020;432(19):5212-26. doi:10.1016/j.jmb.2020.07.009.

7. Wang R, Chen J, Gao K, et al. Vaccine-escape and fastgrowing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries. Genomics. 2021;113(4):2158-70. doi:10.1016/j.ygeno.2021.05.006.

8. Drapkina OM, Berns SA, Gorshkov AYu, et al. Booster vaccination against SARS-CoV-2: current challenges and solutions. Complex Issues of Cardiovascular Diseases. 2022;11(2):196-203. (In Russ.) doi:10.17802/2306-1278-2022-11-2-196-203.

9. Zhukova NV, Kostyukova EA, Kilessa VV, et al. Fundamentals of immunization and the development of post-vaccination immune responses. Crimean Journal of Internal Diseases. 2017;2(33):36-40. (In Russ.)

10. Medunicyn NV. Correction of the development of immunity during vaccination. BIOpreparations. Prevention, Diagnosis, Treatment. 2010;1(37):18-24. (In Russ.)

11. Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020;5(11):1408-17. doi:10.1038/s41564-020-0771-4.

12. Alpatova NA, Avdeeva ZI, Gayderova LA, et al. Immune Response Induced by Immunisation with Antiviral Vaccines. BIOpreparations. Prevention, Diagnosis, Treatment. 2020;20(1): 21-9. (In Russ.) doi:10.30895/2221-996X-202020-1-21-29.

13. Wu K, Choi A, Koch M, et al. Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster. MedRxiv. 2021.05.05.21256716. doi:10.1101/2021.05.05.21256716.

14. Wang YT, Landeras-Bueno S, Hsieh LE, et al. Spiking Pandemic Potential: Structural and Immunological aspects of SARSCoV2. Trends in Microbiol. 2020;28(8):605-18. doi:10.1016/j.tim.2020.05.012.

15. Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013;38:855-69.

16. Zhigalkina PV, Svitich OA. The potential role of regulatory RNA (lncRNA) in innate immunity. In the collection: Globalization of scientific processes, a collection of articles of the International Scientific and Practical Conference. Kirov. 2016;9-12. (In Russ.) EDN RSOOGT

17. Muus C, Luecken MD, Eraslan G, et al. Integrated analyses of single-cell at lases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV2 viral entry and high lights inflammatory programs inputative target cells. BioRxiv. 2020.04.19.049254. doi:10.1101/2020.04.19.049254.

18. Lee CY, Lin RTP, Renia L, et al. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front Immunol. 2020;11:879. doi:10.3389/fimmu.2020.00879.

19. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-62. doi:10.1038/s41586020-2550-z.

20. Huber JP, Farrar DJ. Regulation of effector and memory T-cell functions by type I interferon. Immunology. 2011;132:466-74.

21. Hamada H, Bassity E, Flies A, et al. Multiple redundant effector mechanisms of CD8+ T cells protect against influenza infection. J Immunol. 2013;190(1):296-306. doi:10.4049/jimmunol.1200571.

22. Tai W, He L, Zhang X, et al. Characterization of the receptorbinding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 2020;17:613-20. doi:10.1038/s41423-020-0400-4.

23. Lee CH, Pinho MP, Buckley PR, et al. Potential CD8+ T Cell Cross-Reactivity Against SARS-CoV-2 Conferred by Other Coronavirus Strains. Front Immunol. 2020;11:579480. doi:10.3389/fimmu.2020.579480.

24. Polack FP, Thomas SJ, Kitchin N, et al. C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-15. doi:10.1056/NEJMoa2034577.

25. Lim SM, Chan HC, Santosa A, et al. Safety and side effect profile of Pfizer-BioNTech COVID-19 vaccination among healthcare workers: A tertiary hospital experience in Singapore. Ann Acad Med Singap. 2021;50(9):703-11. doi:10.47102/annalsacadmedsg.2021160.

26. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-16. doi:10.1056/NEJMoa2035389.

27. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021;384(20):1885-98. doi:10.1056/NEJMoa2102214.

28. Drapkina OM, Berns SA, Gorshkov AYu, et al. Thrombodynamics parameters in individuals vaccinated against SARS-CoV-2. Profilakticheskaya Meditsina. 2021;24(12):24-30. (In Russ.) doi:10.17116/profmed20212412124.

29. Drapkina OM, Berns SA, Gorshkov AYu, et al. Reactogenicity of various COVID-19 vaccination regimens. Cardiovascular Therapy and Prevention. 2022;21(12):3476. (In Russ.) doi:10.15829/17288800-2022-3476.

30. Cohen J. China’s vaccine gambit. Science. 2020.370(6522): 1263-7. doi:10.1126/science.370.6522.1263.

31. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39-51. doi:10.1016/S1473-3099(20)30831-8.

32. Palacios R, Patiño EG, de Oliveira Piorelli R, et al. Double-blind, randomized, placebo-controlled phase III clinical rial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated) vaccine manufactured by Sinovac-PROFISCOV: a structured summary of a study protocol for a randomised controlledtrial. Trials. 2020;21(1):853. doi:10.1186/s13063-020-04775-4.

33. Vadrevu KM, Reddy S, Jogdand H, et al. Immunogenicity and reactogenicity of an inactivated SARS-CoV-2 vaccine (BBV152) in children aged 2-18 years: interim data from an open-label, non-randomised, age de-escalation phase 2/3 study. Lancet Infect Dis. 2022;22(9):1303-12. doi:10.1016/S1473-3099(22)00307-3.

34. Shaw RH, Stuart A, Greenland M, et al. Heterologous primeboost COVID-19 vaccination: initial reactogenicity data. Lancet. 2021;397(10289):2043-6. doi:10.1016/S0140-6736(21)01115-6.

35. Schmidt T, Klemis V, Schub D, et al. Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat Med. 2021;1530-5. doi:10.1038/s41591-02101464-w.

36. Drapkina OM, Berns SA, Gorshkov AYu, et al. Long-term dynamics of the levels of anti-SARS-CoV-2 S-protein IgG antibodies in vaccinated individuals. Cardiovascular Therapy and Prevention. 2021;20(8):3124. (In Russ.) doi:10.15829/1728-8800-20213124.

37. Onishchenko GG, Sizikova TE, Lebedev VN, et al. Comparative characteristics of COVID-19 vaccines used for mass immunisation. BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(3):158-66. (In Russ.) doi:10.30895/2221996X-2021-21-3-158-166.

38. Sheibak VM, Haretskaya MV. Development of vaccines for SARS-COV-2. Journal of the Grodno State Medical University. 2022;20(1):5-12. (In Russ.) doi:10.25298/2221-8785-2022-20-1-5-12.


Supplementary files

What is already known about the subject?

  • The emergence of new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants is a serious medical problem.
  • Currently, a specific method for coronavirus di­sease 2019 (COVID-19) prevention is vaccination.

What might this study add?

  • Given the decrease in the effectiveness of post-vaccination immunity a few months after the vaccination, booster vaccination should increase the duration of the protection against severe COVID-19.
  • Booster vaccination contributes to a significant increase in immunity by developing antibodies and activating memory cells.

Review

For citations:


Berns S.A., Veremeyev A.V., Savicheva A.A., Gorshkov A.Yu., Drapkina O.M. Booster vaccination against the SARS-CoV-2: mechanisms and efficiency. Cardiovascular Therapy and Prevention. 2023;22(12):3820. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3820. EDN: WQJMTR

Views: 1451


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)