1. Drapkina OM, Dubolazova YuV, Eliashevich SO. The role of diet and physical activity in therapy of cardiovascular patients with normal ejection fraction. Cardiovascular Therapy and Prevention. 2017;16(2):73-80. (In Russ.) https://doi.org/10.15829/1728-8800-2017-2-73-80.
2. Fülster S, Tacke M, Sandek A, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34(7):512-9. https://doi.org/10.1093/eurheartj/ehs381.
3. Tokmachev RE, Budnevsky AV, Kravchenko AYa. The role of inflammation in the pathogenesis of chronic heart failure. Therapeutic archive. 2016;88(9):106-10. (In Russ.) https://doi.org/10.17116/terarkh2016889106-110.
4. Chumakova GA, Kuznetsova TYu, Druzhilov MA, Veselovskaya NG. Visceral adiposity as a global factor of cardiovascular risk. Russian Journal of Cardiology. 2018;(5):7-14. (In Russ.) https://doi.org/10.15829/1560-4071-2018-5-7-14.
5. Kirkman DL, Bohmke N, Billingsley HE, et al. Sarcopenic Obesity in Heart Failure With Preserved Ejection Fraction. Front Endocrinol (Lausanne). 2020;11:558271. https://doi.org/10.3389/fendo.2020.558271.
6. Pacifico J, Geerlings MAJ, Reijnierse EM, et al. Prevalence of sarcopenia as a comorbid disease: a systematic review and meta-analysis. Exp Gerontol. 2020;131:110801. https://doi.org/10.1016/j.exger.2019.110801.
7. Izzo A, Massimino E, Riccardi G, et al. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183. https://doi.org/10.3390/nu13010183.
8. Clynes MA, Gregson CL, Bruyère O, et al. Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatology (Oxford, England). 2021;60(2):529-37. https://doi.org/10.1093/rheumatology/keaa755.
9. Kim HS, Park JW, Lee YK, et al. Prevalence of sarcopenia and mortality rate in older adults with hip fracture. J Am Geriatr Soc. 2022;70(8):2379-85. https://doi.org/10.1111/jgs.17905.
10. Yeung SSY, Reijnierse EM, Pham VK, et al. Sarcopenia and its association with falls and fractures in older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2019;10(3):485-500. https://doi.org/10.1002/jcsm.12411.
11. Mikaelyan AA, Varaeva YuR, Liskova YuV, et al. Sarcopenia and Chronic Heart Failure. Part 1. General Medicine. 2023;2:51-6. (In Russ.) https://doi.org/10.24412/2071-5315-2023-12879.
12. Crick D, Halligan S, Burgner D, et al. Comparison of stability of Glycoprotein Acetyls and high sensitivity C-reactive protein as markers of chronic inflammation. MedRxiv. 2023. https://doi.org/10.1101/2023.03.02.23286349.
13. Zvereva MD, Saburova OS, Melnikov IS, et al. Monomeric C-reactive protein in coronary artery disease. Complex Issues of Cardiovascular Diseases. 2020;9(2):45-52. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-2-45-52.
14. Utkina EA, Afanasyeva OI, Pokrovsky SN. C-reactive protein: pathogenetic characteristics and possible therapeutic target. Russian Journal of Cardiology. 2021;26(6):4138. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4138.
15. Zhbanov KA, Salakheeva EYu, Sokolova IYa, et al. Neuregulin-1β, Biomarkers of Inflammation and Myocardial Fibrosis in Heart Failure Patients. Rational Pharmacotherapy in Cardiology. 2022;18(5):522-9. (In Russ). https://doi.org/10.20996/1819-6446-2022-09-05.
16. Khazova EV, Bulashova OV, Amirov NB. Is it necessary to determine highly sensitive C-reactive protein in patients with chronic heart failure: clinical and prognostic aspects. Bulletin of contemporary clinical medicine. 2022;15(4):54-9. (In Russ.) https://doi.org/10.33619/2414-2948/89/39.
17. Fyodorova TA, Ivanova YeA, Semenenko NA, et al. Clinical and Laboratory Aspects of Chronic Heart Failure in Patients with Metabolic Syndrome. Effective pharmacotherapy. 2019; 15(20):10-6. (In Russ.) https://doi.org/10.33978/2307-3586-2019-15-20-10-16.
18. Opotowsky AR, Valente AM, Alshawabkeh L. Prospective cohort study of C-reactive protein as a predictor of clinical events in adults with congenital heart disease: results of the Boston adult congenital heart disease biobank. Eur Heart J. 2018;39(34):3253-61. https://doi.org/10.1093/eurheartj/ehy362.
19. Pellicori P, Zhang J, Cuthbert J. High-sensitivity C-reactive protein in chronic heart failure: patient characteristics, phenotypes, and mode of death, Cardiovasc Res. 2020;116(1):91-100. https://doi.org/10.1093/cvr/cvz198.
20. Örsçelik Ö, Özkan B, Arslan A. Relationship between intrarenal renin-angiotensin activity and re-hospitalization in patients with heart failure with reduced ejection fraction. Anatol J Cardiol. 2018;19(3):205-12. https://doi.org/10.14744/AnatolJCardiol.2018.68726.
21. Lena A, Anker MS, Springer J. Muscle wasting and sarcopenia in heart failure - the current state of science. Int J Mol Sci. 2020;21(18):6549. https://doi.org/10.3390/ijms21186549.
22. Wiedmer P, Jung T, Castro JP, et al. Sarcopenia - molecular mechanisms and open questions. Ageing Res Rev. 2021;65: 101200. https://doi.org/10.1016/j.arr.2020.101200.
23. Zarudskij AA. Sarcopenia and it's components in patients with systolic heart failure. Current problems of health care and medical statistics. 2020;2:132-43. (In Russ.) https://doi.org/10.24411/2312-2935-2020-00037.
24. Zuikova AA, Shevcova VI, Shevcov AN. Sarcopenic Obesity in Comorbid Patients. Journal of Clinical Practice. 2022;13(4):60-7. (In Russ.) https://doi.org/10.17816/clinpract112438.
25. Curcio F, Testa G, Liguori I, et al. Sarcopenia and heart failure. Nutrients. 2020;12(1):211. https://doi.org/10.3390/nu12010211.
26. Carbone S, Billingsley HE, Rodriguez-Miguelez P, et al. Lean mass abnormalities in heart failure: the role of sarcopenia, sarcopenic obesity, and cachexia. Curr Probl Cardiol. 2020;45(11):100417. https://doi.org/10.1016/j.cpcardiol.2019.03.006.
27. Keng BMH, Gao F, Teo LLY, et al. Associations between skeletal muscle and myocardium in aging: a syndrome of "cardio-sarcopenia"? J Am Geriatr Soc. 2019;67(12):2568-73. https://doi.org/10.1111/jgs.16132.
28. Aimo A, Saccaro LF, Borrelli C, et al. The ergoreflex: how the skeletal muscle modulates ventilation and cardiovascular function in health and disease. Eur J Heart Fail. 2021;23(9):1458-67. https://doi.org/10.1002/ejhf.2298.
29. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393 (10191):2636-46. https://doi.org/10.1016/S0140-6736(19)31138-9.
30. Park CH, Do JG, Lee YT. Sarcopenic obesity associated with high-sensitivity C-reactive protein in age and sex comparison: A two-center study in South Korea. BMJ Open. 2018;8:e021232. https://doi.org/10.1136/bmjopen-2017-021232.
31. Safonova YuA, Toroptsova NV. Frequency and risk factors of sarcopenia in the elderly people. The clinician 2022;16(2):40-7. (In Russ.) https://doi.org/10.17650/1818-8338-2022-16-2-K661.
32. DuBrock HM, AbouEzzeddine OF, Redfield MM. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. PloS One. 2018;13(8):e0201836. https://doi.org/10.1371/journal.pone.0201836.
33. Brinkley TE, Hsu FC, Beavers KM. Total and abdominal adiposity are associated with inflammation in older adults using a factor analysis approach. J Gerontol: Series A. 2012;67(10):1099-106. https://doi.org/10.1093/gerona/gls077.
34. Schrager MA, Metter EJ, Simonsick E. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol. 2007;102:919-25. https://doi.org/10.1152/japplphysiol.00627.2006.
35. Cesari M, Kritchevsky SB, Baumgartner RN. Sarcopenia, obesity, and inflammation - Results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am J Clin Nutr. 2005;82(1):428-34. https://doi.org/10.1093/ajcn/82.2.428.
36. Fukuda T, Bouchi R, Takeuchi T. Sarcopenic obesity assessed using dual energy X-ray absorptiometry (DXA) can predict cardiovascular disease in patients with type 2 diabetes: A retrospective observational study. Cardiovasc Diabetol. 2018;17:55. https://doi.org/10.1186/s12933-018-0700-5.
37. Franceschi C, Garagnani P, Vitale G. Inflammaging and 'garb-aging'. Trends Endocrinol Metab. 2017;28(3):199-212. https://doi.org/10.1016/j.tem.2016.09.005.