Effect of renal denervation on blood biomarker levels in patients with resistant hypertension, diabetes and coronary artery disease after 12-month follow-up
https://doi.org/10.15829/1728-8800-2024-4210
EDN: WDIWAU
Abstract
Aim. To study the effects of catheter renal denervation (RDN) on blood biomarker levels in patients with cardiovascular comorbidity and type 2 diabetes (T2D).
Material and methods. Sixty patients with true resistant hypertension (HTN) in combination with T2D and coronary artery disease after complete myocardial revascularization using percutaneous coronary intervention were included in a prospective observational non-randomized study. Patients were distributed in a 1:1 ratio into the intervention group and the control group. RDN was performed through femoral access using a Spyral system (Medtronic, USA). The primary endpoint was the change in plasma renin activity after 12 months. The results are presented as Me (Q25; Q75).
Results. In the intervention group, plasma renin activity significantly decreased from 4,65 (1,88; 7,79) to 2,21 (0,87; 5,49) ng/ml/h; angiotensin-I from 1,73 (0,34; 3,22) to 0,46 (0,31; 1,95) ng/ml; aldosterone from 131 (78; 173) to 118 (68; 153) pg/ml (p<0,05 for all). There were no significant changes in the control group. A decrease in office systolic and diastolic blood pressure was confirmed, with the greatest antihypertensive effect achieved in the high-renin hypertension group (renin activity at inclusion >6,5 ng/ml/h). The blood pressure decreases correlated with decrease in plasma renin activity (r=0,85; p<0,05). A significantly positive effect of RDN on reducing the levels of C-reactive protein, fasting glucose, glycated hemoglobin, and triglycerides was revealed (p<0,05 for all), without significant changes in the control group. The intervention and control groups did not statistically differ in the incidence of major adverse cardiovascular events, the glomerular filtration rate was comparable in both groups and did not change over time.
Conclusion. The use of RDN in comorbid patients is safe and allows for better control of modifiable risk factors for the progression of HTN and T2D due to an improvement of blood pressure, carbohydrate metabolism parameters, regulatory factors of the renin-angiotensin-aldosterone system, and factors of the systemic inflammatory response.
About the Authors
N. A. ArablinskyRussian Federation
Moscow
D. A. Feshchenko
Russian Federation
Moscow
V. A. Metelskaya
Russian Federation
Moscow
Yu. S. Timofeev
Russian Federation
Moscow
F. B. Shukurov
Russian Federation
Moscow
M. T. Taliuridze
Russian Federation
Moscow
D. K. Vasiliev
Russian Federation
Moscow
O. M. Drapkina
Russian Federation
Moscow
References
1. Kakorina EP, Nikitina SY. Features of the structure of mortality in the Russian Federation. Problemi socialnoi gigieni, zdravookhranenia i istorii meditsini. 2019;27(5):822-6. (In Russ.) doi:10.32687/0869-866X-2019-27-5-822-826.
2. Blum MF, Chen J, Surapaneni A, et al. Renin: Measurements, Correlates, and Associations With Long-Term Adverse Kidney Outcomes. Am J Hypertens. 2023;36(1):42-9. doi:10.1093/ajh/hpac112.
3. Akhadov ShV, Ruzbanova GR, Molchanova GS, et al. Arterial hypertension progression and changing activity of reninangiotensinaldosterone and sympatho-adrenal systems. Cardiovascular Therapy and Prevention. 2010;9(2):10-5. (In Russ.)
4. Gurevich MA, Kuzmenko NA. Blockade of aldosterone in the treatment of arterial hypertension (aspects of the use of eplerenone). RMJ. 2017;(11):776-9. (In Russ.)
5. Laragh JH, Sealey JE. The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure. Am J Hypertens. 2011;24(11):1164-80. doi:10.1038/ajh.2011.171.
6. Barsukov AV, Korneychuk NN, Shustov SB. Нigh-renin hypertensions: from symptom to diagnosis. Herald of the Northwestern State Medical University named after I.I. Mechnikov. 2017;9(2):7-18. (In Russ.) doi:10.17816/mechnikov2017927-18.
7. Eniseeva ES. Primary aldosteronism: Modern approaches to diagnosis. Baikal Medical Journal. 2022;1(1):11-23. (In Russ.) Енисеева Е. С. Первичный альдостеронизм: современные подходы к диагностике. Байкальский медицинский журнал. 2022;1(1):11-23. doi:10.57256/2949-0715-2022-1-1-11-23.
8. Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. Journal of Experimental Medicine. 2018;215(1): 21-33. doi:10.1084/JEM.20171773.
9. Shevchenko EA, Potemina TE, Uspensky AN. Role of adiponektin and leptin in the development of metabolic syndrome and related obesity and type II diabetes mellitus. Bulletin of the Medical Institute "REAVIZ" (Rehabilitation, doctor and health). 2022;12(1):29-37. (In Russ.). doi:10.20340/vmi-rvz.2022.1.CLIN.3.
10. Geagea AG, Mallat S, Matar CF, et al. Adiponectin and Inflammation in Health and Disease: An Update. Open Medi J. 2018;5: 20-32. doi:10.2174/1874220301805010020.
11. Perry RJ, Shulman GI. The Role of Leptin in Maintaining Plasma Glucose During Starvation. Postdoc J. 2018;6(3):3-19. doi:10.14304/surya.jpr.v6n3.2.
12. Leehey DJ, Zhang JH, Emanuele NV, et al. BP and Renal Outcomes in Diabetic Kidney Disease: The Veterans Affairs Nephropathy in Diabetes Trial. Clin J Am Soc Nephrol. 2015;10(12):2159-69. doi:10.2215/CJN.02850315.
13. Kaneko T, Kodani E, Fujii H, et al. High body mass index and triglyceride levels at health checkups increase the risk of newonset chronic kidney disease and worsening renal function: the TAMA MED Project-CK D. Clin Exp Nephrol. 2024;28(10):1016-26. doi:10.1007/s10157-024-02507-5.
14. Viazzi F, Piscitelli P, Ceriello A, et al. Resistant hypertension, time-updated blood pressure values and renal outcome in type 2 diabetes mellitus. J. Am. Heart Assoc. 2017;6(9):e006745. doi:10.1161/JAHA.117.006745.
15. Barbato E, Azizi M, Schmieder RE, et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2023;44(15):1313-30. doi:10.1093/eurheartj/ehad054.
16. Arablinsky NA, Feshchenko DA, Shukurov FB, et al. Promising areas of renal denervation application. Russian Journal of Cardiology. 2024;29(2S):5847. (In Russ.) doi:10.15829/1560-4071-2024-5847.
17. Bhatt DL, Kandzari DE, O'Neill WW, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393-401. doi:10.1056/NEJMoa1402670.
18. Miroslawska AK, Gjessing PF, Solbu MD, et al. Metabolic effects two years after renal denervation in insulin resistant hypertensive patients. The Re-Shape CV-risk study. Clin Nutr. 2021;40(4): 1503-9. doi:10.1016/j.clnu.2021.02.027.
19. Kresoja KP, Rommel KP, Fengler K, et al. Renal Sympathetic Denervation in Patients With Heart Failure With Preserved Ejection Fraction. Circ Heart Fail. 2021;14(3):e007421. doi:10.1161/CIRCHEARTFAILURE.120.007421.
20. Falkovskaya AYu, Mordovin VF, Pekarskiy SE, et al. Renal denervation as a new nephroprotective strategy in diabetic patients with resistant hypertension. Siberian Journal of Clinical and Experimental Medicine. 2020;35(1):80-92. (In Russ.) doi:10.29001/2073-8552-2020-35-1-80-92.
21. Mahfoud F, Townsend RR, Kandzari D, et al. Changes in Plasma Renin Activity After Renal Artery Sympathetic Denervation. J Am Coll Cardiol. 2021;77(23):2909-19. doi:10.1016/j.jacc.2021.04.044.
22. Zyubanova IV, Mordovin VF. Renin and aldosterone concentrations change depending on the arterial blood pressure long-term after renal denervation in patients with resistant hypertension. Siberian Journal of Clinical and Experimental Medicine. 2017;32(1):19-23. (In Russ.) doi:10.29001/2073-8552-2017-32-1-19-23.
23. Sitkova ES, Mordovin VF, Pekarskiy SE, et al. Positive effects of renal denervation on markers of cardiovascular inflammation and left ventricular mass. 24-months follow-up. Cardiovascular Therapy and Prevention. 2021;20(2):2678. (In Russ.) doi:10.15829/1728-8800-2021-2678.
24. Zhang Z, Liu K, Xiao S, et al. Effects of catheter based renal denervation on glycemic control and lipid levels: a systematic review and meta-analysis. Acta Diabetol. 2021;58:603-14. doi:10.1007/s00592-020-01659-6.
25. Falkovskaya AYu, Mordovin VF, Pekarskiy SE, et al. The effects of renal denervation on adipokines and pro-inflammatory status in patients with resistant arterial hypertension associated with type 2 diabetes mellitus. Siberian Journal of Clinical and Experimental Medicine. 2019;34(4):118-27. (In Russ.) doi:10.29001/2073-8552-2019-34-4-118-127.
26. Feshchenko DA, Rudenko BA, Shukurov FB, et al. Influence of catheter-based renal denervation on carbohydrate metabolism in patients with diabetes and hypertension. Cardiovascular Therapy and Prevention. 2022;21(12):3459. (In Russ.) doi:10.15829/1728-8800-2022-3459.
27. Manukyan M, Falkovskaya A, Mordovin V, et al. Favorable effect of renal denervation on elevated renal vascular resistance in patients with resistant hypertension and type 2 diabetes mellitus. Front Cardiovasc Med. 2022;9:1010546. doi:10.3389/fcvm.2022.1010546.
28. Rosa J, Widimský P, Toušek P, et al. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension. 2015;65(2):407-13. doi:10.1161/HYPERTENSIONAHA.114.04019.
Supplementary files
What is already known about the subject?
- Renal denervation (RDN) is an interventional procedure.
- RDN is pathogenetically justified in the treatment of resistant hypertension (HTN), but other effects of RDN remain incompletely understood.
- In connection with the return of the technique to real-world interventional practice, study of RDN effects both at the clinical and fundamental physiological levels is important for a better understanding of its potential and limitations in various groups of patients.
What might this study add?
- The study results confirmed the RDN safety in a group of comorbid patients and showed its favorable effects in the context of better control of modifiable risk factors for the progression of HTN and diabetes due to an improvement of blood pressure, carbohydrate metabolism parameters and regulatory factors of the renin-angiotensin-aldosterone system and factors of the systemic inflammatory response.
Review
For citations:
Arablinsky N.A., Feshchenko D.A., Metelskaya V.A., Timofeev Yu.S., Shukurov F.B., Taliuridze M.T., Vasiliev D.K., Drapkina O.M. Effect of renal denervation on blood biomarker levels in patients with resistant hypertension, diabetes and coronary artery disease after 12-month follow-up. Cardiovascular Therapy and Prevention. 2024;23(12):4210. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4210. EDN: WDIWAU