Preview

Cardiovascular Therapy and Prevention

Advanced search

Evaluation of purine metabolites after coronary artery bypass grafting in overweight and normal-­weight patients

https://doi.org/10.15829/1728-8800-2025-4213

EDN: JLTSXI

Abstract

Aim. To study the purine metabolism changes in overweight patients who underwent coronary artery bypass grafting (CABG) in the early postoperative period and during the rehabilitation, compared with that in patients with normal body weight.

Material and methods. This prospective study included 155 patients, including 87 (56%) men and 68 (44%) women, who underwent CABG due to critical coronary artery stenosis. All patients were diagnosed with single-­vessel disease. The age range was 35-65 years. Patients we­re divided into 3 following groups: group 1 (n=85) — overweight pa­tients; group 2 (n=70) — patients with normal body weight; group 3 (con­trol group) — 30 healthy individuals. Changes in purine metabolite le­vels were assessed over time: 1 day after blood flow restoration at the cardiac surgery center, and then at rehabilitation stages 1 (1 to 3 months), 2 (3 to 6 months), and 3 (6 months to 1 year) at the cardiac re­ha­bi­lita­tion center. Statistical analysis was performed using SPSS 27.0 and MedCalc version 22 software. The data are presented as tables and graphs using GraphPad PrismTM (version 7).

Results. In overweight patients after CABG, purine metabolite levels initially decrease, including in rehabilitation stages 1 and 2, and then sharply increase in rehabilitation stage 3.

Conclusion. In overweight patients, the level of purine metabolites in­creases sharply after CABG at rehabilitation stage 3 compared to those at stages 1 and 2, suggesting resumption of the pathological process (ischemia, inflammation).

About the Authors

A. N. Seytekova
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



V. B. Molotov-­Luchansky
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



O. A. Ponomareva
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



G. Zh. Mershenova
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



B. T. Ekizhanova
Cardic Rehabilitation Center "Tulpar"
Kazakhstan

Kasym Amanzholova Str., 79, 100001, Karaganda



O. A. Visternichyan
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



D. M. Shaukhat
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



I. K. Zhumabekova
Astana Medical University
Kazakhstan

Beibitshilik Str., 49а, Astana, 010000



I. V. Beynikova
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



L. B. Aitisheva
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



A. B. Auasheva
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



M. E. Kosybaeva
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



N. B. Myrzashova
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



A. S. Dildabekova
Karaganda Medical University
Kazakhstan

Gogol Str., 40, Karaganda, 100008



References

1. Atarbayeva VSh, Abdirova TM, Dzhusipov AK. Improving the quality of specialist training is a priority area of the Department of Cardiology and Rheumatology. Bulletin of the Russian Aca­demy of Sciences. 2011;4:3-4. (In Russ.)

2. Komarova IS, Zhelnov VV, Andreeva NV, et al. Post-reperfusion syndrome in patients with ischemic heart disease after coronary stenting. Klin med. 2018;96(1):73-7. (In Russ.) doi:10.18821/0023-2149-2018-96-1-73-77.

3. Khubulava GG, Shishkevich AN, Mikhailov SS, et al. Myocardial reperfusion syndrome. Pathogenesis, clinic, diagnosis. Bulletin of the Russian Military Medical Academy. 2020;22(1):196-200. (In Russ.) doi:10.17816/brmma25992.

4. Kosheleva NA, Magdeeva NA, Phrontaseva VV, et al. Reperfusion myocardial injury after primary percutaneous coronary inter­vention in patient with acute ST elevation myocardial infarction. Clinical observation. The Russian Archives of Internal Medicine. 2016;6(6):65-7. (In Russ.) doi:10.20514/2226-6704-2016-6-6-65-67.

5. Yang GZ, Xue FS, Liu YY, et al. Feasibility analysis of oxygen-­glucose deprivation-­nutrition resumption on H9c2 cells in vitro models of myocardial ischemia-­reperfusion injury. Chin Med J (Engl). 2018;131(19):2277-86. doi:10.4103/0366-6999.241809.

6. Yagudin TA, Shabanova AТ, Liu H. Novel Aspects of Cardiac Ische­mia and Reperfusion Injury Mechanisms. Creative surgery and oncology. 2018;8(3):216-24. (In Russ.) doi:10.24060/2076-3093-2018-8-3-216-224.

7. Yeganyan RA. Overweight and obesity in primary health care. Russian Journal of Preventive Medicine. 2010;4:12-21. (In Russ.)

8. Lupanov VP. Obesity as a risk factor for the development of cardiovascular disasters. Russian Medical Journal. 2003;6:331. (In Russ.)

9. Billington CJ, Goodwin NJ, Hill JO, et al. Overweight, obesity, and health risk. Arch Intern Med. 2000;160(7):898-904. doi:10.1001/archinte.160.7.898.

10. Kremlev DI. The effect of positive fatty degeneration on the development of myocardial infarction. The paradox of obesity. Bulletin of the Russian Military Medical Academy. 2018;3:204-11. (In Russ.)

11. Sabirova JeJu, Chicherina EN, Jepshtejn AM. Coronary artery bypass grafting in the treatment of patients with coronary heart disease. The current state of the issue. Vyatka Medical Bulletin. 2012;4:49-54. (In Russ.)

12. Jennings RB, Sommers HM, Smyth GA, et al. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68-78.

13. Offermanns S. Activation of platelet function through G pro­tein-coupled receptors. Circ Res. 2006; 99(12):1293-304. doi:10.1161/01.RES.0000251742.71301.16.

14. Graziansky NA. Antiplatelet therapy in coronary heart disease. Some challenges and achievements. Cardiologiia. 2010;3(54):19-22. (In Russ.)

15. Oreshnikov EV, Gunin AG, Madyanov IV, et al. Purines of blood and cerebrospinal fluid during pregnancy. Reproduction problems. 2008;6:74-80. (In Russ.)

16. Ragino YuI, Baum VA, Polonskaya YaV, et al. Atherosclerosis and oxidation. New methods for evaluation of oxidative modification of proteins. Bulletin of the Russian Academy of Medical Sciences. 2006;4(122):67-73. (In Russ.)

17. Kolesnik MYu, Belenichev IF, Dziak GV, et al. Features of the functioning of myocardial mitochondria in rats with spon­ta­ne­ous hypertension (SHR) against the background of experi­men­tal diabetes mellitus and atherosclerosis. Zaporozhye Me­di­cal Journal. 2012;2:26-30. (In Russ.)

18. Kovaleva ON, Ascheulova TV, Gerasimchuk NN, et al. The role of oxidative stress in the development and progression of hypertension. Scientific bulletin of Belgorod State University. Series: Medicine. Pharmacy. 2015;29;4(201):5-10. (In Russ.)

19. Leontyeva IV, Nikolaeva EA. Cardiomyopathy in congenital metabolic disorders in children. Russian Bulletin of Perinatology and Pediatrics. 2016;61(2):17-27. (In Russ.) doi:10.21508/1027-4065-2016-61-2-17-27.

20. Roitberg GE. Metabolic syndrome. Moscow: MEDpress-­inform, 2021:120. (In Russ.) ISBN 978-5-00030-832-5.

21. Ivanov VV, Shakhristova YeV, Stepovaya YeA, et al. Oxidative stress: effect on insulin secretion, hormone reception by adi­po­cytes and lipolysis in adipose tissue. Bulletin of Siberian medicine. 2014;13(3):32-9. (In Russ.) doi:10.20538/1682-0363-2014-3-32-39.

22. Provotorov VM, Filatova YuI, Chernov AV. The role of oxidative stress in the pathogenesis of bronchial asthma. Applied infor­ma­tion aspects of medicine. 2015;18(4):43-9. (In Russ.)

23. Borisov VV, Stavrovskaia EV. Purine metabolism disorders: diagnosis and treatment (clinical lecture). Consilium Medicum. 2019;21(12):134-8. (In Russ.) doi:10.26442/20751753.2019.12.190675.

24. Sinyuto OV, Nozdracheva EV. The effect of purine metabolism disorders on the functional state of the musculoskeletal system. Scientific Notes of Bryansk State University. 2021(1): 48-52. (In Russ.)

25. Shaukhat DM, Ibrayeva LK, Rybalkina DKh, et al. Assessment of purine catabolism and morbidity in miners depending on their work experience. Russian Open Medical J. 2024;13(1):1-8. doi:10.15275/rusomj.2024.0108.

26. Bical О, Gerhardt MF, Paumier D, et al. Comparison of different types of cardioplegia and reperfusion on myocardial metabolism and free radical activity. Circulation. 1991;84(5):375-9.

27. Kutepov DE, Zhigalova MS, Pasechnik IN. Pathogenesis of ischemia/reperfusion syndrome Kazan Medical J. 2018;99(4): 640-4. (In Russ.) doi:10.17816/KMJ2018-640.

28. Humphrey L, Fu R, Rogers K, et al. Homocysteine level and co­ronary heart disease incidence: a systematic review and meta-analysis. Mayo Clin Proc. 2008;83:1203-12. doi:10.4065/83.11.1203.

29. Grebenchikov OA, Zabelina TS, Filippovskaya ZhS, et al. Oxidative stress in cardiac surgery. Bulletin of Anesthesiology and resuscitation. 2016;13(4):53-60. (In Russ.) doi:10.21292/2078-5658-2016-13-4-53-60.

30. Bouillon VV, Krylova IB, Selina EN. Cardioprotection in ischemic myocardial injury. Reviews of clinical pharmacology and drug therapy. 2018;16(2):13-7. (In Russ.) doi:10.17816/RCF16213-17.

31. Shemarova IV, Nesterov VP, Korotkov SM, et al. Participation of Ca2+ in the development of ischemic disorders of myocardial contractile function. Journal of Evolutionary Biochemistry and Physiology. 2017;53(5):328-37. (In Russ.)

32. Jennings RB, Reimer KA, Hill ML, et al. Total ischemia in dog hearts, in vitro. 1. Comparison of high energy phosphate produc­tion, utilization, and depletion, and of adenine nucleotide cata­bo­lism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res. 1981;l(49):892-900. doi:10.1161/01.res.49.4.892.

33. Furuhashi М, Koyama М, Higashiura Yu, et al. Differential regulation of hypoxanthine and xanthine by obesity in a general population. Diabetes Investig. 2020;11(4):878-87. doi:10.1111/jdi.13207.


Supplementary files

What is already known about the subject?

  • Overweight patients have a higher risk of adverse cardiovascular events.
  • Most overweight patients are at risk of coronary athe­ro­sclerosis and constitute the patient popula­tion undergoing interventional procedures or coro­na­ry artery bypass grafting.
  • Overweight patients undergoing interventional co­ro­nary artery treatment require long-term reha­bi­li­tation in rehabilitation centers.

What might this study add?

  • In overweight patients following coronary arte­ry bypass grafting, purine metabolite levels signifi­cant­ly increase in stage 3 of rehabilitation compared to stages 1 and 2, which indirectly suggests the re­sump­tion and progression of pathological process (ische­mia, inflammation).

Review

For citations:


Seytekova A.N., Molotov-­Luchansky V.B., Ponomareva O.A., Mershenova G.Zh., Ekizhanova B.T., Visternichyan O.A., Shaukhat D.M., Zhumabekova I.K., Beynikova I.V., Aitisheva L.B., Auasheva A.B., Kosybaeva M.E., Myrzashova N.B., Dildabekova A.S. Evaluation of purine metabolites after coronary artery bypass grafting in overweight and normal-­weight patients. Cardiovascular Therapy and Prevention. 2025;24(10):4213. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4213. EDN: JLTSXI

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)