Analysis of arterial stiffness parameters in breast cancer patients undergoing combination anthracycline-containing chemotherapy
https://doi.org/10.15829/1728-8800-2025-4272
EDN: ICJVWB
Abstract
Aim. To identify and analyze changes of arterial stiffness (AS) parameters in breast cancer patients undergoing combination anthracycline-containing chemotherapy (ACCT).
Material and methods. Fifty women with verified breast cancer aged 46,7±7 years with indications for combined ACCT were assessed for AS (carotid-femoral pulse wave velocity (cfPWV) (m/s); cardio-ankle vascular index (CAVI); cardio-ankle pulse wave velocity (caPWV) (m/s); β-stiffness index, novel Russian Stelari and haStart indices) at 4 visits as follows: before ACCT, after 8-12, 20-24 and 48 weeks from the ACCT start.
Results. A reliable decrease in cfPWV was revealed at visit 2 (7,48±1,51, p<0,05) and visit 3 (8,34±1,66, p<0,05) with further significant increase at visit 4 when compared with baseline data. Similar reliable changes were demonstrated for the Stelari index. CAVI decreased at visits 2 and 3 with a reliable difference from the values at visits 1 and 4. No reliable changes in β and haStart stiffness indices were obtained during the follow-up period.
Conclusion. In patients with breast cancer who underwent combined ACCT, an increase in cfPWV by 0,95 m/s per year was revealed, which indicates accelerated vascular wall aging and a possible increase in cardiovascular risk in this category of patients.
About the Authors
E. G. MedvedevaRussian Federation
Moscow
E. N. Yushchuk
Russian Federation
Moscow
S. V. Ivanova
Russian Federation
Moscow
D. A. Filonenko
Loginov Moscow Clinical Scientific and Practical Center
Russian Federation
Moscow
L. G. Zhukova
Russian Federation
Moscow
O. S. Trofimenko
Russian Federation
Moscow
References
1. Merabishvili VM, Semiglazov VF, Komiakhov AV, et al. The state of cancer care in Russia: breast cancer. Epidemiology and survival of patients. The impact of the SARS-CoV-2-beta-coronavirus epidemic (clinical and population study). Tumors of the Female Reproductive System. 2023;19(3):16-24. (In Russ.) doi:10.17650/1994-4098-2023-19-3-16-24.
2. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229-63. doi:10.3322/caac.21834.
3. Shakhzadova AO, Starinsky VV, Lisichnikova IV, et al. Cancer care to the population of Russia in 2022. Siberian Journal of Oncology. 2023;22(5):5-13. (In Russ.) doi:10.21294/1814-4861-2023-22-5-5-13.
4. Giordano SH, Lin Y-L, Kuo YF, et al. Decline in the use of anthracyclines for breast cancer. JCO. 2012;30:2232-9. doi:10.1200/JCO.2011.40.1273.
5. Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43:4229-361. doi:10.1093/eurheartj/ehac244.
6. Vasyuk YA, Ivanova SV, Shkolnik EL, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2):4-19. (In Russ.) doi:10.15829/1728-8800-2016-2-4-19.
7. Chazova IE, Ageev FT, Aksenova AV, et al. Eurasian clinical guidelines for cardiovascular complications of cancer treatments: diagnosis, prevention and treatment (2022). Eurasian Heart Journal. 2022;(1):6-79. (In Russ.) doi:10.38109/2225-1685-2022-1-6-79.
8. Zhirnova OA, Tkachenko SB, Pestovskaya OR. Qualitative and quantitative analysis of arterial wall movement using tissue Doppler imaging. Regional Blood Circulation and Microcirculation. 2010; (9):25-31. (In Russ.) doi:10.24884/1682-6655-2010-9-1-25-31.
9. Bakholdin IB, Milyagin VA, Talov AV, et al. Stelari Start index — a new promising indicator of vascular stiffness. Bulletin of the Smolensk State Medical Academy. 2022;21:96-103. (In Russ.) doi:10.37903/vsgma.2022.3.11.
10. Kobalava ZhD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical Guidelines. Russian Journal of Cardiology. 2020; 25(3):3786. (In Russ.) doi:10.15829/1560-4071-2020-3-3786.
11. Anastasiou M, Oikonomou E, Theofilis P, et al. Prolonged impact of anti-cancer therapy on endothelial function and arterial stiffness in breast cancer patients. Vascul Pharmacol. 2023;152:107195. doi:10.1016/j.vph.2023.107195.
12. Bonsignore A, Brahmbhatt P, Mina DS, et al. Adverse vascular functional and structural changes secondary to breast cancer and its treatments with adjuvant therapy: A systematic review. SN Compr Clin Med. 2021;3:1561-74. doi:10.1007/s42399-021-00859-7.
13. Yushchuk EN, Medvedeva EG, Filonenko DA, et al. Features of arterial stiffness dynamics during chemotherapy for breast cancer. Therapeutic Archive. 2023;95(8):621-6. (In Russ.) doi:10.26442/00403660.2023.08.202327.
14. Vassilakopoulou M, Mountzios G, Papamechael C, et al. Paclitaxel chemotherapy and vascular toxicity as assessed by flow-mediated and nitrate-mediated vasodilatation. Vascul Pharmacol. 2010;53:115-21. doi:10.1016/j.vph.2010.05.002.
15. Narezkina A, Narayan HK, Zemljic-Harpf AE. Molecular mechanisms of anthracycline cardiovascular toxicity. Clin Sci (Lond). 2021;135: 1311-32. doi:10.1042/cs20200301.
16. Bosman M, Favere K, Neutel CHG, et al. Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. Toxicol Lett. 2021;346:23-33. doi:10.1016/j.toxlet.2021.04.015.
17. Fitzpatrick FA, Wheeler R. The immunopharmacology of paclitaxel (Taxol), docetaxel (Taxotere), and related agents. Int Immunopharmacol. 2003;3:1699-714. doi:10.1016/j.intimp.2003.08.007.
18. Ivanova GT. Effect of doxorubicin on the reactivity of rat mesenteric arteries. J Evol Biochem Phys. 2022;58:1914-25. doi:10.1134/s0022093022060205.
19. Nicoletto RE, Ofner CM. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol. 2022;89:285-311. doi:10.1007/s00280-022-04400-y.
20. Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: An updated literature review. Clin Pharmacokinet. 2018;57:7-19. doi:10.1007/s40262-017-0563-z.
21. Parikh JD, Hollingsworth KG, Kunadian V, et al. Measurement of pulse wave velocity in normal ageing: Comparison of vicorder and magnetic resonance phase contrast imaging. BMC Cardiovasc Disord. 2016; 16:50. doi:10.1186/s12872-016-0224-4.
22. Agbaje AO, Barker AR, Tuomainen TP, et al. Cumulative muscle mass and blood pressure but not fat mass drives arterial stiffness and carotid intima-media thickness progression in the young population and is unrelated to vascular organ damage. Hypertens Res. 2023;46: 984-99. doi:10.1038/s41440-022-01065-1.
23. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. J Am Coll Cardiol. 2010;55:1318-27. doi:10.1016/j.jacc.2009.10.061.
24. Şahin M, Kazaz SN, Kartaler F, et al. Arterial stiffness may predict subsequent cancer therapy-related cardiac dysfunction in breast cancer patients. Cardiovasc Toxicol. 2024;24:375-84. doi:10.1007/s12012-024-09841-w.
25. Dobson R, Ghosh AK, Ky B, et al. BSE and BCOS guideline for transthoracic echocardiographic assessment of adult cancer patients receiving anthracyclines and/or trastuzumab. JACC Cardio Oncol. 2021;3:1-16. doi:10.1016/j.jaccao.2021.01.011.
Supplementary files
Review
For citations:
Medvedeva E.G., Yushchuk E.N., Ivanova S.V., Filonenko D.A., Zhukova L.G., Trofimenko O.S. Analysis of arterial stiffness parameters in breast cancer patients undergoing combination anthracycline-containing chemotherapy. Cardiovascular Therapy and Prevention. 2025;24(4):4272. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4272. EDN: ICJVWB