Preview

Cardiovascular Therapy and Prevention

Advanced search

Association of left atrial strain and inflammatory factors in hypertensive patients working in the Arctic

https://doi.org/10.15829/1728-8800-2025-4277

EDN: WKDJEQ

Abstract

Aim. To study the association of left atrial (LA) strain and inflammatory factors in hypertensive (HTN) patients without target organ damage working on a rotational basis in the Arctic.

Material and methods. A total of 335 patients were recruited in 20222023 at the Novy Port of OOO Gazpromneft-Yamal, located in the Arctic. The study included 86 patients with HTN and healthy individuals aged 1860 years working by the expeditionary shifts. Inflammatory markers such as interleukin (IL)-1b, IL-6, IL-8, tumor necrosis factor alpha (TNF-a), high-sensitivity C-reactive protein (hsCRP) were determined in the blood serum. We performed transthoracic speckle tracking echocardiography to assess the left atrial reservoir strain (LASr) on the Vivid S70 device, USA, and determination of tissue color Doppler indices.

Results. All patients included in the study were divided into 2 groups: Group 1 — 49 patients with stage 1 hypertension, mainly men (89,8%), middle-aged (45,07±8,1 years), group 2 — 37 practically healthy individuals, the average age was 43,24±7,6 years, men 86,5%. In the group of hypertensive patients, a subgroup of patients with a decrease in LASr compared to the reference index (<39%) and with an increase in LASr (>39%) was identified. There were no patients with LASr ≲23%, which allowed us to rule out heart failure. About half of the patients with HTN had LASr between 23 and 39%. The levels of proinflammatory cytokines (IL-1, IL-6, IL-8) in patients with HTN did not differ from the parameters of healthy individuals. Early diastolic lateral and septal mitral annular velocities (TDI e'lat and TDI e'sept) were significantly lower in the Arctic conditions compared to those in healthy individuals. The correlations between the LA strain and cytokines were studied. An inversely proportional correlation was found between the TDI e'lat and TDI e'sept parameters and the IL-6 level.

Conclusion. Analysis of a subgroup of patients with HTNwithout left ventricular hypertrophy showed an inversely proportional relationship between the cytokine and TDI e'lat and TDI e'sept levels, which suggests an association of inflammatory factors and LA strain in patients with HTN working on a rotational basis in the Arctic.

About the Authors

L. I. Gapon
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



E. P. Samoylova
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



D. N. Nistryanu
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



A. V. Kalugin
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



N. E. Shirokov
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



N. A. Musikhina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



E. I. Yaroslavskaya
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



T. I. Petelina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



E. M. Shapovalova
Tyumen State Medical University
Russian Federation

Tyumen



K. S. Avdeeva
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk



References

1. Kobalava ZhD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines of the Ministry of Health of the Russian Federation. Russian Journal of Cardiology. 2024; 29(9):6117. (In Russ.) doi:10.15829/1560-4071-2024-6117.

2. Shlyakhto EV, Konradi AO. Remodeling of the heart in hypertension — pathogenetic factors and prognostic significance. Cardiology of the CIS. 2003;1(1):20-32. (In Russ.)

3. Galyavich AS, Tereshchenko SN, Uskach TM, et al. 2024 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiol. 2024;29(11):6162. (In Russ.) doi:10.15829/1560-4071-2024-6162.

4. Tokmachev RE, Budnevsky AV, Kravchenko AYu. The role of inflammation in the pathogenesis of chronic heart failure. Therapeutic archive. 2016;88(9):106-10. (In Russ.) doi:10.17116/terarkh2016889106-110.

5. Samoylova EV, Korotaeva AА, Zhirov IV, et al. Pathways of interleukin-6 signal transmission in heart failure with preserved and reduced left ventricular ejection fraction. Kardiologiia. 2024;64(3):34-9. (In Russ.) doi:10.18087/cardio.2024.3.n2534.

6. Alekhin MN, Kalinin AO. Diastolic function of the left ventricle: the significance of global longitudinal deformation of the left atrium. Ultrasound and functional diagnostics. 2020;3:91-104. (In Russ.) doi:10.24835/1607-0771-2020-3-91-104.

7. Kalinin AО, Alekhin MN, Bahs G, et al. Evaluation of the state of the atrial myocardium in the mode of two-dimensional gray-scale deformation in patients with arterial hypertension with slight left ventricular hypertrophy. Kardiologiia. 2010;50(8):13-20.

8. Morris DA, Belyavskiy E, Aravind-Kumar R, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC: Cardiovascular Imaging. 2018;11(10):1405- 15. doi:10.1016/j.jcmg.2017.07.029.

9. Ye Z, Miranda WR, Yeung DF, et al. Left atrial strain in evaluation of heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2020;33(12):1490-9. doi:10.1016/j.echo.2020.07.020.

10. Reddy YNV, Obokata M, Egbe A, et al. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur J Heart Fail. 2019;21:891-900. doi:10.1002/ejhf.1464.

11. Perutsky DN, Obrezan AG, Osipova OA, et al. Left atrium function in patients with chronic heart failure. Cardiovascular Therapy and Prevention. 2022;21(6):3265. (In Russ.) doi:10.15829/1728-8800-2022-3265.

12. Mazur ES, Mazur VV, Bazhenov N, et al. Deformation of the left atrium in the assessment of heart failure with preserved ejection fraction in patients with arterial hypertension. Russian Journal of Cardiology. 2022;27(8):5099. (In Russ.) doi:10.15829/1560-4071-2022-5099.

13. Frydas A, Morris DA, Belyavskiy E, et al. Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure. ESC Heart Fail. 2020;7(4):1956-65. doi:10.1002/ehf2.12820.

14. Hoit BD. Left Atrial Reservoir Strain. Its Time Has Come. JACC Cardiovasc Imaging. 2022;15(3):392-4. doi:10.1016/j.jcmg.2021.10.003.

15. Pathan F, D'Elia N, Nolan MT, et al. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30(1):59-70.e8. doi:10.1016/j.echo.2016.09.007.

16. Miranda-Aquino T, Araújo M, Sampaio F, et al. Impact of the diastolic dysfunction in the left atrial strain in patients with ischemic heart disease. A cross-sectional study. Rev Port Cardiol (Engl Ed). 2019;38(11):789-804. English, Portuguese. doi:10.1016/j.repc.2019.03.007.

17. Dzhioeva ON, Maksimova OA, Rogozhkina EA, et al. Features of the protocol of transthoracic echocardiographic study in patients with obesity. Russian Journal of Cardiology. 2022;27(12):5243. (In Russ.) doi:10.15829/1560-4071-2022-5243.

18. Serezhina EK, Obrezan AG. New imaging techniques in the diagnosis of heart failure with preserved ejection fraction. RMJ. Medical Review. 2019;3(1-2):52-6. (In Russ.)

19. Shlyakhto EV. Classification of heart failure: focus on prevention. Russian Journal of Cardiology. 2023;28(1):5351. (In Russ.) doi:10.15829/1560-4071-2023-5351.

20. Yezhov MV, Kukharchuk VV, Sergienko IV, et al. Disorders of lipid metabolism. Clinical guidelines 2023 Russian Journal of Cardiology. 2023;28(5):5471. (In Russ.) doi:10.15829/1560-4071-2023-5471.

21. Gapon LI, Shurkevich NP, Vetoshkin AS, et al. Arterial hypertension in the conditions of the Tyumen North. Desynchronosis and hyperreactivity of the organism as factors in the formation of the disease. 2009; Tyumen'. (In Russ.) ISBN: 978-5-86093-277-4.

22. Fan JL, Su B, Zhao X, et al. Correlation of left atrial strain with left ventricular end-diastolic pressure in patients with normal left ventricular ejection fraction. Int J Cardiovasc Imaging. 2020;36(9):1659-66. doi:10.1007/s10554-020-01869-7.

23. Brand A, Romero Dorta E, Wolf A, et al. Phasic left atrial strain to predict worsening of diastolic function: Results from the prospective Berlin Female Risk Evaluation follow-up trial. Front Cardiovasc Med. 2023;10:1070450. doi:10.3389/fcvm.2023.1070450.

24. Shurkevich NP, Vetoshkin AS, Simonyan AA, et al. Factors associated with intermediate probability of heart failure with preserved ejection fraction in asymptomatic patients on shift in the Arctic, gender differences. Russian Journal of Cardiology. 2023;28(8): 5400. (In Russ.) doi:10.15829/1560-4071-2023-5400.

25. Korchin VI, Korchina TYa, Ternikova EM, et al. Influence of climatogeographic factors of the Yamalo-Nenets Autonomous Okrug on population health. J of Medical and Biological Research. 2021;77-88. (In Russ.) doi:10.37482/2687-1491-Z046.

26. Bessonova MI, Petelina TI, Gapon LI. Cardiology in the Arctic: a collective monograph. Moscow: GEOTAR-Media, 2024. 317 р. (In Russ.) ISBN: 978-5-91409-589-2.

27. Jayedi A, Rahimi K, Bautista LE, et al. Inflammation markers and risk of developing hypertension: a meta-analysis of cohort studies. Heart. 2019;105(9):686-92. doi:10.1136/heartjnl-2018-314216.

28. Мooney L, Jackson CE, Adamson C, et al. Adverse outcomes associated with interleukin-6 in patients recently hospitalized for heart failure with preserved ejection fraction. Circ Heart Fail. 2023;16(4):e010051. doi:10.1161/CIRCHEARTFAILURE.122.010051.

29. Pavlova OS, Yasiukaits NV, Barbuk OA, et al. Association of inflammation indicators and hematological indices with left ventricular hypertrophy in patients with arterial hypertension. "Arterial'naya Gipertenziya" ("Arterial Hypertension"). 2024;30(1): 108-20. (In Russ.) doi:10.18705/1607-419X-2024-2405.

30. Kouzu H, Yuda S, Muranaka A, et al. Left ventricular hypertrophy causes different changes in longitudinal, radial, and circumferential mechanics in patients with hypertension: a two-dimensional speckle tracking study. J Am Soc Echocardiogr. 2011;24(2):192-9. doi:10.1016/j.echo.2010.10.020.

31. Stefani LD, Trivedi SJ, Ferkh A, et al. Changes in left atrial phasic strain and mechanical dispersion. Effects of age and gender. Echocardiography. 2021;38(3):417-26. doi:10.1111/echo.14997.


Review

For citations:


Gapon L.I., Samoylova E.P., Nistryanu D.N., Kalugin A.V., Shirokov N.E., Musikhina N.A., Yaroslavskaya E.I., Petelina T.I., Shapovalova E.M., Avdeeva K.S. Association of left atrial strain and inflammatory factors in hypertensive patients working in the Arctic. Cardiovascular Therapy and Prevention. 2025;24(5):4277. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4277. EDN: WKDJEQ

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)