Vulnerable plaques and lipid changes over statin therapy in patients with acute coronary syndrome. Initial data from the Combi-LLT ACS trial
https://doi.org/10.15829/1728-8800-20254318
EDN: LIOBQX
Abstract
Aim. To assess the detection rate of vulnerable plaques using computed tomography (CT) in patients after acute coronary syndrome (ACS) and percutaneous coronary intervention (PCI).
Material and methods. The study included 125 patients with ACS who underwent PCI (men, 68%; median age, 59 (51-66) years). One month after the index event, patients who did not achieve target low-density lipoprotein cholesterol values were divided into two groups depending on the signs of vulnerable plaques according to CT data.
Results. Vulnerable plaques were detected in 56 (44,8%) patients using CT (69,6% men, median age 60 (51-63) years). Patients with vulnerable plaques were more likely to have right coronary artery (CA) involvement — 53,6 vs 11,6% (p<0,001); left main CA — 33,9 vs 5,8% (p<0,001); left anterior descending artery — 76,8 vs 15,9% (p<0,001); circumflex artery — 48,2 vs 18,8% (p<0,001) compared to patients without vulnerable plaques. The coronary calcium index in patients with vulnerable plaques was significantly higher — 111 (29-247) vs 35 (1-138) (p=0,003). Patients with signs of vulnerable plaques had more severe coronary artery disease according to the segment-stenosis (SSS) and segment-involvement (SIS) scores — 3 (1-4) vs 0 (0-1) (p<0,001) compared to patients without vulnerable plaques.
Conclusion. The detection rate of vulnerable plaques in patients after ACS and PCI not achieved target LDL values while receiving highdose statin therapy was 44,8%. Patients with vulnerable plaques were characterized by more spread atherosclerotic coronary involvement and a high calcium index.
About the Authors
G. R. BikbaevaRussian Federation
Samara
A. N. Kovalskaya
Russian Federation
Samara
K. V. Kuznetsova
Russian Federation
Samara
P. D. Duplyakova
Russian Federation
Samara
A. A. Tukhbatova
Russian Federation
Samara
E. M. Sukhinina
Russian Federation
Samara
T. V. Pavlova
Russian Federation
Samara
D. V. Duplyakov
Russian Federation
Samara
E. V. Savinova
Russian Federation
Samara
References
1. Usova EI, Malishevsky LM, Alieva AS, et al. Analysis of predictors of the risk of developing repeated acute cardiovascular events in patients with acute coronary syndrome. Russian Journal of Cardiology. 2024;29(6):5881. (In Russ.) doi:10.15829/1560-4071-2024-5881.
2. Novikova IA, Nekrutenko LA, Lebedeva TM, et al. Patient after myocardial infarction: risk factors for new cardiovascular events. Health Risk Analysis. 2019;1:135-43. (In Russ.) doi:10.21668/health.risk/2019.1.15.
3. Susekov AV. Modern algorithms for statin therapy. Russian Journal of Cardiology. 2023;28(10):5594. (In Russ.) doi:10.15829/1560-4071-2023-5594.
4. Russian Society of Cardiology. Acute myocardial infarction with ST segment elevation of the electrocardiogram. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(11): 4103. (In Russ.) doi:10.15829/1560-4071-2020-4103.
5. Barbarash OL, Duplyakov DV, Zateyshchikov DA, et al. Acute coronary syndrome without ST segment elevation of the electrocardiogram. Clinical guidelines 2020. Russian Journal of Cardiology. 2021;26(4):4449. (In Russ.) doi:10.15829/1560-4071-2021-4449.
6. 2023 ESC Guidelines for the management of acute coronary syndromes. EurHeart J. 2023;44:3720-826. doi:10.1093/eurheartj/ehad191.
7. Kovalskaya AN, Bikbaeva GR, Duplyakov DV. Effect of combined lipid-lowering therapy on the vulnerability of atherosclerotic plaque in patients with acute coronary syndrome (CombiLLT ACS): protocol of a randomized study. Russian Journal of Cardiology. 2022;27(4S):5282. (In Russ.) doi:10.1582/1560-4071-2022-5282.
8. Lin F, Shaw LJ, Berman DS, et al. Multidetector computed tomography coronary artery plaque predictors of stress-induced myocardial ischemia by SPECT. Atherosclerosis. 2008;197(2): 700-9. doi:10.1016/j.atherosclerosis.2007.07.002.
9. Austen WG, Edwards JE, Frye RL, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51(4S):5-40. doi:10.1161/01.cir.51.4.5.
10. Blokhina AV, Ershova AI, Meshkov AN, et al. Lipid Clinic is an Efficacious Model of Preventive Medicine. Rational Pharmacotherapy in Cardiology. 2021;17(1):4-10. (In Russ.) doi:10.20996/1819-6446-2021-01-02.
11. Schleyer T, Hui S, Wang J, et al. Quantifying Unmet Need in Statin-Treated Hyperlipidemia Patients and the Potential Benefit of Further LDL-C Reduction Through an EHR-Based Retrospective Cohort Study. Manag Care Spec Pharm. 2019;25(5): 544-54. doi:10.18553/jmcp.2019.25.5.544.
12. Ray KK, Molemans B, Schoonen WM, et al. DA VINCI study. EUWide Cross-Sectional Observational Study of Lipid-Modifying Therapy Use in Secondary and Primary Care: the DA VINCI study. Eur J Prev Cardiol. 2021;28(11):1279-89. doi:10.1093/eurjpc/zwaa047.
13. Shalnova SA. Awareness and features of statin therapy in individuals with different cardiovascular risk: The ESSE-RF study. Cardiovascular Therapy and Prevention. 2016;15(4):29-37. (In Russ.) doi:10.15829/1728-8800-2016-4-29-37.
14. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000;20:1262-75. Arterioscler. Thromb. Vasc. Biol. 2000;20:1262-75. doi:10.1161/01.atv.20.5.1262.
15. Golukhova EZ, Gromova OI, Bulaeva NI, et al. Sudden cardiac death in patients with coronary heart disease: from mechanisms to clinical practice. Cardiologiia. 2017;57(12):73-81. (In Russ.) doi:10.18087/cardio.2017.12.10069.
16. Fishbein MC. The vulnerable and unstable atherosclerotic plaque. Cardiovasc Pathol. 2010;19(1):6-11. doi:10.1016/j.carpath.2008.08.004.
17. Bikbaeva GR, Kovalskaya AN, Kuznetsova KV, et al. The role of imaging methods in assessing vulnerable plaques and the effectiveness of lipid-lowering therapy. Russian Journal of Cardiology. 2024;29(8):5984. (In Russ.) doi:10.15829/1560-4071-2024-5984.
18. Merkulova IN, Semenova AA, Barysheva NA, et al. The Prognostic Significance of the Characteristics of Atherosclerotic Plaques Left after Percutaneous Coronary Intervention in the Development of Cardiovascular Events in Patients With Acute Coronary Syndrome According to Computed Tomographic Angiography of the Coronary Arteries. Kardiologiia. 2025;65(1):11-9. (In Russ.) doi:10.18087/cardio.2025.1.n2693.
19. Serrano CV Jr, de Mattos FR, Pitta FG, et al. Association between Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios and Coronary Artery Calcification Score among Asymptomatic Patients: Data from a Cross-Sectional Study. Mediators Inflamm. 2019;2019:6513847. doi:10.1155/2019/6513847.
20. Vancheri F, Longo G, Vancheri S, et al. Coronary Artery Microcalcification: Imaging and Clinical Implications. Diagnostics (Basel). 2019;9(4):125. doi:10.3390/diagnostics9040125.
21. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336-45. doi:10.1056/NEJMoa072100.
22. Shemesh J. Coronary artery calcification in clinical practice: what we have learned and why should it routinely be reported on chest CT? Ann Transl Med. 2016;4(8):159. doi:10.21037/atm.2016.04.08.
23. Greenland P, Blaha MJ, Budoff M J, et al. Coronary calcium score and cardiovascular risk. J Am Coll Cardiol. 2018;72(4):434-47. doi:10.1016/j.jacc.2018.05.027.
24. Clerc OF, Kaufmann BP, Possner M, et al. Long-term prognostic performance of low-dose coronary computed tomography angiography with prospective electrocardiogram triggering. Eur Radiol. 2017;27(11):4650-60. doi:10.1007/s00330-017-4849-1.
25. Szilveszter B, Vattay B, Bossoussou M, et al. CAD-RADS may underestimate coronary plaque progression as detected by serial CT angiography Eur Heart J Cardiovasc Imaging. 2022;23(11):1530-9. doi:10.1093/ehjci/jeab215.
26. Tsibulkin NA, Tukhvatullina GV, Tsibulkina VN, et al. Inflammatory mechanisms in atherosclerosis pathogenesis. Practical medicine. 2016;4(96):165-9. (In Russ.) EDN WKBHFJ.
27. Novikova OA, Laktionov PP, Karpenko AA. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction. Vascular. 2019;27(1):98-109. doi:10.1177/1708538118796063.
28. Borisova LV, Pushkin AS, Kim SV, et al. The role of hematological index in prognosis of outcomes in patients with acute coronary syndrome. Laboratory Service. 2018;7(2):49-55. (In Russ.) doi:10.17116/labs20187249-55.
Supplementary files
Review
For citations:
Bikbaeva G.R., Kovalskaya A.N., Kuznetsova K.V., Duplyakova P.D., Tukhbatova A.A., Sukhinina E.M., Pavlova T.V., Duplyakov D.V., Savinova E.V. Vulnerable plaques and lipid changes over statin therapy in patients with acute coronary syndrome. Initial data from the Combi-LLT ACS trial. Cardiovascular Therapy and Prevention. 2025;24(5):4318. (In Russ.) https://doi.org/10.15829/1728-8800-20254318. EDN: LIOBQX