Role of microRNA in assessing cardiovascular risk in patients with familial hypercholesterolemia
https://doi.org/10.15829/1728-8800-2025-4448
EDN: DQMUJS
Abstract
The most common inherited form of dyslipidemia and the main cause of premature cardiovascular disease is familial hypercholesterolemia. This disease is characterized by high levels of low-density lipoprotein cholesterol and, as a consequence, early coronary atherosclerosis and coronary artery disease. Modern research increasingly focuses on the role of small non-coding ribonucleic acids (RNA), in particular microRNA, in the regulation of lipid metabolism and the development of atherosclerotic changes. The aim of this review was to analyze recently published studies describing the potential role of microRNA in assessing cardiovascular risk in patients with familial hypercholesterolemia.
About the Authors
V. I. MikhailinaRussian Federation
Moscow
A. V. Kiseleva
Russian Federation
Moscow
V. A. Kutsenko
Russian Federation
Moscow
A. N. Meshkov
Russian Federation
Moscow
O. M. Drapkina
Russian Federation
Moscow
References
1. Meshkov AN, Ershova AI, Kiseleva AV, et al. The prevalence of heterozygous familial hypercholesterolemia in selected regions of the Russian federation: The FH-ESSE-RF study. J Pers Med. 2021;11:464. doi:10.3390/jpm11060464.
2. Hopkins PN, Toth PP, Ballantyne CM, et al. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:S9-17. doi:10.1016/j.jacl.2011.03.452.
3. Meshkov AN, Mikhailina VI, Smetnev SA, et al. Clinical manifestations and efficacy of lipid-lowering therapy in a double heterozygous patient with familial hypercholesterolemia. Atherosclersis and dyslipidemias. 2023;3(52):53-8. (In Russ.) doi:10.34687/2219-8202.jad.2023.03.0007.
4. Di Taranto MD, Fortunato G. Genetic heterogeneity of Familial Hypercholesterolemia: Repercussions for molecular diagnosis. Int J Mol Sci. 2023;24:3224. doi:10.3390/ijms24043224.
5. Ezhov MV, Kukharchuk VV, Sergienko IV, et al. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardiology. 2023;28(5):5471. (In Russ.) doi:10.15829/1560-4071-2023-5471.
6. Sergienko IV, Meshkov AN, Alieva AS, et al. Possibilities of genetic diagnosis for determining treatment tactics in patients with familial hypercholesterolemia. Atherosclersis and dyslipidemias. 2023;4(53):5-17. (In Russ.) doi:10.34687/2219-8202.jad.2023.04.0001.
7. Konovalov GA, Kukharchuk VV, Pokrovskiy SN. Extracorporeal treatment of Refractory dyslipidemia. Atherosclersis and dyslipidemias. 2010;1(1):37-48. (In Russ.)
8. EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet. 2021;398:1713-25. doi:10.1016/S0140-6736(21)01122-3.
9. Sohel MH. Extracellular/circulating MicroRNAs: Release mechanisms, functions and challenges. Achiev Life Sci. 2016;10:175-86. doi:10.1016/j.als.2016.11.007.
10. O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402.
11. Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis. 2015;35:3-11. doi:10.1055/s-0034-1397344.
12. Creemers EE, Tijsen AJ, Pinto YM. Circulating MicroRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483-95. doi:10.1161/circresaha.111.247452.
13. Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and cardiovascular diseases. Biomed Res Int. 2015;2015:682857. doi:10.1155/2015/682857.
14. de Gonzalo-Calvo D, Cenarro A, Garlaschelli K, et al. Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. J Mol Cell Cardiol. 2017;106:55-67. doi:10.1016/j.yjmcc.2017.03.005.
15. Escate R, Padró T, Pérez de Isla L, et al. Circulating miR-6821-5p levels and coronary calcification in asymptomatic familial hypercholesterolemia patients. Atherosclerosis. 2024;392:117502. doi:10.1016/j.atherosclerosis.2024.117502.
16. Escate R, Padró T, Suades R, et al. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolemia patients. Cardiovasc Res. 2021;117(1): 109-22. doi:10.1093/cvr/cvaa039.
17. Dlouha D, Blaha M, Huckova P, et al. Longterm LDL-apheresis treatment and dynamics of circulating miRNAs in patients with severe familial hypercholesterolemia. Genes. 2023;14:1571. doi:10.3390/genes14081571.
18. Wu Y, Jiang L, Zhang H, et al. Integrated analysis of microRNA and mRNA expression profiles in homozygous familial hypercholesterolemia patients and validation of atherosclerosis associated critical regulatory network. Genomics. 2021;113:2572-82. doi:10.1016/j.ygeno.2021.05.036.
19. Cione E, Mahjoubin-Tehran M, Bacchetti T, et al. Profiling of differentially expressed MicroRNAs in familial hypercholesterolemia via direct hybridization. Noncoding RNA Res. 2024;9:796-810. doi:10.1016/j.ncrna.2024.02.017.
20. Freitas RCC de, Bortolin RH, Kuraoka S, et al. Integrative analysis of miRNAs and proteins in plasma extracellular vesicles of patients with familial hypercholesterolemia. Clin Chim Acta. 2025;568:120123. doi:10.1016/j.cca.2025.120123.
21. Scicali R, Di Pino A, Pavanello C, et al. Analysis of HDL-microRNA panel in heterozygous familial hypercholesterolemia subjects with LDL receptor null or defective mutation. Sci Rep. 2019;9:20354. doi:10.1038/s41598-019-56857-2.
22. Khan J, Lieberman JA, Lockwood CM. Variability in, variability out: best practice recommendations to standardize preanalytical variables in the detection of circulating and tissue microRNAs. Clin Chem Lab Med. 2017;55:608-21. doi:10.1515/cclm-2016-0471.
23. Chan S-F, Cheng H, Goh KK-R, et al. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn. 2023;25:438-53. doi:10.1016/j.jmoldx.2023.03.005.
24. Zhelankin AV, Iulmetova LN, Sharova EI. The Impact of the Anticoagulant Type in Blood Collection Tubes on Circulating Extracellular Plasma MicroRNA Profiles Revealed by Small RNA Sequencing. Int J Mol Sci. 2022;23(18):10340. doi:10.3390/ijms231810340.
25. Liu Y, Song J-W, Lin J-Y, et al. Roles of MicroRNA-122 in cardiovascular fibrosis and related diseases. Cardiovasc Toxicol. 2020; 20:463-73. doi:10.1007/s12012-020-09603-4.
26. Small EM, O’Rourke JR, Moresi V, et al. Regulation of PI3-kinase/Akt signaling by muscleenriched microRNA-486. Proc Natl Acad Sci USA. 2010;107:4218-23. doi:10.1073/pnas.1000300107.
27. Hsu A, Chen S-J, Chang Y-S, et al. Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. Biomed Res Int. 2014;2014:418628. doi:10.1155/2014/418628.
28. Loyer X, Potteaux S, Vion A-C, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014;114:434-43. doi:10.1161/CIRCRESAHA.114.302213.
29. Hametner B, Wassertheurer S, Mayer CC, et al. Aortic pulse wave velocity predicts cardiovascular events and mortality in patients undergoing coronary angiography: A comparison of invasive measurements and noninvasive estimates. Hypertension. 2021; 77:571-81. doi:10.1161/HYPERTENSIONAHA.120.15336.
30. Goeman JJ, Solari A. Multiple hypothesis testing in genomics. Stat Med. 2014;33:1946-78. doi:10.1002/sim.6082.
Supplementary files
Review
For citations:
Mikhailina V.I., Kiseleva A.V., Kutsenko V.A., Meshkov A.N., Drapkina O.M. Role of microRNA in assessing cardiovascular risk in patients with familial hypercholesterolemia. Cardiovascular Therapy and Prevention. 2025;24(6):4448. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4448. EDN: DQMUJS