Preview

Cardiovascular Therapy and Prevention

Advanced search

Optimization of a library preparation protocol for sequencing circulating plasma and serum microRNAs

https://doi.org/10.15829/1728-8800-2025-4557

EDN: DVGAAK

Abstract

Aim. To optimize a library preparation protocol for sequencing small non-coding ribonucleic acids (microRNAs) based on the commercial QIAseq miRNA UDI Library Kit to improve the quality of the obtained data.

Material and methods. Plasma and serum samples from four study participants were collected from the biobank collection of the National Medical Research Center for Therapeutic and Preventive Medicine. Ribonucleic acid (RNA) was isolated for each sample in parallel, using 200 and 300 µl aliquots. Two sequencing libraries were prepared from each RNA sample using the QIAseq miRNA UDI Library Kit by two manufacturer's protocol versions as follows: one for 1 ng of RNA with a reduced number of amplification cycles and one for 10 ng of RNA. Sequencing was performed on a NextSeq 550.

Results. When comparing groups of samples prepared using different protocol versions, there was a significant difference in the tags per million reads (TPM) per sample for human (ENCODE v47) and microRNA genes (p<0,001).

Conclusion. We showed that when using plasma and serum biosamp­les, the main parameter influencing higher microRNA sequencing rates is a reduction in the number of polymerase chain reaction cycles during library preparation.

About the Authors

A. V. Kiseleva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



E. A. Sotnikova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. A. Zharikova
National Medical Research Center for Therapy and Preventive Medicine; Lomonosov Moscow State University
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990; Leninskiye Gory, 1, Moscow, 119234



V. A. Kutsenko
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. L. Borisova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



S. A. Shalnova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. I. Ershova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



References

1. Matias-­Garcia PR, Wilson R, Mussack V, et al. Impact of long-term storage and freeze-­thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020;15:e0227648. doi:10.1371/journal.pone.0227648.

2. O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA bioge­ne­sis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402.

3. Mikhailina VI, Meshkov AN, Kiseleva AN, et al. MicroRNA as bio­mar­kers of coronary artery disease in real-world practice. Car­dio­vas­cular Therapy and Prevention. 2024;23(12):4225. (In Russ.) doi:10.15829/1728-8800-2024-4225.

4. Kiseleva AV, Sotnikova EA, Kutsenko VA, et al. Circulating micro­RNAs and collateral circulation in coronary chronic total occlusion. Cardiovascular Therapy and Prevention. 2024;23(10): 4190. (In Russ.) doi:10.15829/1728-8800-2024-4190.

5. Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;231:25-30. doi:10.1002/jcp.25056.

6. Chan S-F, Cheng H, Goh KK-R, et al. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn. 2023;25:438-53. doi:10.1016/j.jmoldx.2023.03.005.

7. Sotnikova EA, Kiseleva AV, Meshkov AN. Effect of plasma and serum storage conditions on circulating microRNA levels. Car­dio­vascular Therapy and Prevention. 2024;23(11):4180. (In Russ.) doi:10.15829/1728-8800-2024-4180.

8. Sotnikova EA, Kiseleva AV, Meshkov AN. Preanalytical factors affecting the plasma and serum levels of circulating microRNAs. Cardiovascular Therapy and Prevention. 2024;23(11):4179. (In Russ.) doi:10.15829/1728-8800-2024-4179.

9. Suzuki K, Yamaguchi T, Kohda M, et al. Establishment of pre­ana­lytical conditions for microRNA profile analysis of clinical plasma sam­ples. PLoS One. 2022;17:e0278927. doi:10.1371/journal.pone.0278927.

10. Androvic P, Benesova S, Rohlova E, et al. Small RNA-sequencing for analysis of circulating miRNAs: benchmark study. J Mol Diagn. 2022;24:386-94. doi:10.1016/j.jmoldx.2021.12.006.

11. Coenen-­Stass AML, Magen I, Brooks T, et al. Evaluation of me­thodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 2018;15:1133-45. doi:10.1080/15476286.2018.1514236.

12. Hasby F, Bachmann J, Wang C, et al. Adapter dilution and input optimization for Qiagen QIAseq miRNA Library kit. bioRxiv. 2025. doi:10.1101/2025.04.30.651388.

13. Benesova S, Kubista M, Valihrach L. Small RNA-sequencing: Ap­pro­aches and considerations for miRNA analysis. Diagnostics (Basel). 2021;11:964. doi:10.3390/diagnostics11060964.

14. Barberán-­Soler S, Vo JM, Hogans RE, et al. Decreasing miRNA se­quencing bias using a single adapter and circularization ap­proach. Genome Biol. 2018;19:105. doi:10.1186/s13059-018-1488-z.

15. Herbert ZT, Thimmapuram J, Xie S, et al. Multisite evaluation of next-generation methods for small RNA quantification. J Biomol Tech. 2020;31:47-56. doi:10.7171/jbt.20-3102-001.

16. Wong RKY, MacMahon M, Woodside JV, et al. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics. 2019;20:446. doi:10.1186/s12864-019-5826-7.

17. Heinicke F, Zhong X, Zucknick M, et al. Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol. 2020;17:75-86. doi:10.1080/15476286.2019.1667741.

18. Rodgers O, Watson CJ, Waterfield T. MiRNA library preparation op­timisation for low-concentration and low-volume paediatric plasma samples. Noncoding RNA. 2025;11. doi:10.3390/ncrna11010011.

19. Kopylova OV, Ershova AI, Pokrovskaya MS, et al. Population-­nosological research biobank of the National Medical Research Center for Therapy and Preventive Medicine: analysis of bio­samp­les, principles of collecting and storing information. Car­dio­vas­cular Therapy and Prevention. 2022;20(8):3119. (In Russ.) doi:10.15829/1728-8800-2021-3119.

20. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017;27:491-9. doi:10.1101/gr.209601.116.

21. Martin M. Cutadapt removes adapter sequences from high-through­put sequencing reads. EMBnet J. 2011;17:10. doi:10.14806/ej.17.1.200.

22. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21. doi:10.1093/bioinformatics/bts635.

23. Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. doi:10.1093/gigascience/giab008.

24. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general pur­pose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30. doi:10.1093/bioinformatics/btt656.

25. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57-74. doi:10.1038/nature11247.

26. Wickham H. Ggplot2: Elegant graphics for data analysis. New York, NY: Springer; 2009. ISBN: 978-0-387-98141-3.

27. Grieco GE, Sebastiani G, Fignani D, et al. Protocol to analyze circulating small non-coding RNAs by high-throughput RNA se­quencing from human plasma samples. STAR Protoc. 2021;2: 100606. doi:10.1016/j.xpro.2021.100606.


Supplementary files

What is already known about the subject?

  • Next-generation sequencing provides high sensitivity and specificity, as well as the ability to quantify and detect new small non-coding ribonucleic acids (microRNAs).
  • Library preparation for microRNA sequencing can significantly impact the results obtained, including the coverage and profile of detected microRNAs.

What might this study add?

  • When using low miRNA content biosamples in research, optimization of the sequencing library preparation protocol can significantly improve the results obtained.

Review

For citations:


Kiseleva A.V., Sotnikova E.A., Zharikova A.A., Kutsenko V.A., Borisova A.L., Shalnova S.A., Ershova A.I., Meshkov A.N., Drapkina O.M. Optimization of a library preparation protocol for sequencing circulating plasma and serum microRNAs. Cardiovascular Therapy and Prevention. 2025;24(11):4557. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4557. EDN: DVGAAK

Views: 89

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)