Search for diagnostic microRNAs for brain tumor identification using a low-temperature plasma bank
https://doi.org/10.15829/1728-8800-2025-4565
EDN: PSHXTX
Abstract
Aim. To assess the level of circulating small non-coding ribonucleic acids (microRNAs), previously identified as differentially expressed in next-generation sequencing (NGS) profiles of various brain tumor types, using a validation cohort formed from a low-temperature plasma bank.
Material and methods. Plasma bioarchiving was performed on patients treated for brain tumors at the National Medical Research Center of Oncology from April 2018 to December 2024. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the levels of 10 microRNAs in plasma samples from 40 individuals. Participants were divided into five groups of eight individuals as follows: those diagnosed with glioblastoma, astrocytoma, oligodendroglioma, benign meningioma, and healthy controls. The study groups included 17 women and 15 men, with a median age of 52,5 years. The control group included seven women and one man, with a median age of 53 years.
Results. Plasma levels of miR-30c-5p, miR-128-3p, miR-186-5p, miR-194-5p, miR-484, miR-19b-3p, miR-431-5p, miR-3168, let-7c-5p, and miR-363-3p were determined using NGS data from 58 plasma samples (Gvaldin, 2024). The validation cohort revealed differential expression changes for four microRNAs (miR-128-3p, miR-194-5p, miR-19b-3p, and miR-363-3p) across the study groups.
Conclusion. Differential expression of circulating miR-128-3p, miR-194-5p, miR-19b-3p, and miR-363-3p is associated with brain tumor oncogenesis and can be used for their diagnosis.
About the Authors
O. I. KitRussian Federation
14 liniya str., 63, Rostov-on-Don, 344037
N. N. Timoshkina
Russian Federation
14 liniya str., 63, Rostov-on-Don, 344037
E. P. Omelchuk
Russian Federation
14 liniya str., 63, Rostov-on-Don, 344037
D. Yu. Gvaldin
Russian Federation
14 liniya str., 63, Rostov-on-Don, 344037
N. A. Petrusenko
Russian Federation
14 liniya str., 63, Rostov-on-Don, 344037
I. A. Novikova
Russian Federation
14 liniya str., 63, Rostov-on-Don, 344037
E. E. Rostorguev
Russian Federation
14 liniya str., 63, Rostov-on-Don, 344037
References
1. Omel'chuk EP, Timoshkina NN, Rostorguev EE, et al. Circulating biomarkers of gliomas (review of literature). Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2024;69(8):411-20. (In Russ.) doi:10.51620/0869-2084-2024-69-8-411-420.
2. Karandashov IV, Golbin DA, Goryainov SA, et al. Principles of biobanking and biobanks of central nervous system tumors in world practice. Burdenko’s Journal of Neurosurgery = Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko. 2022;86(6):91-8. (In Russ.) doi:10.17116/neiro20228606191.
3. Hasani F, Masrour M, Jazi K, et al. MicroRNA as a potential diagnostic and prognostic biomarker in brain gliomas: a systematic review and meta-analysis. Front Neurol. 2024;15:1357321. doi:10.3389/fneur.2024.1357321.
4. Ali H, Harting R, de Vries R, et al. Blood-based biomarkers for glioma in the context of gliomagenesis: a systematic review. Front Oncol. 2021;11:665235. doi:10.3389/fonc.2021.665235.
5. Gvaldin DYu, Petrusenko NA, Rostorguev EE, et al. Comparative analysis of the profile of circulating microRNAs in the blood plasma of patients with gliomas. Research and Practical Medicine Journal. 2024;11(2):36-45. (In Russ.) doi:10.17709/2410-1893-2024-11-2-3. EDN: LEHTGP.
6. Omelchuk EP, Timoshkina NN, Gvaldin DYu, et al. Creation of a plasma collection for the search of diagnostic biomarkers of glial tumors. Cardiovascular Therapy and Prevention. 2024; 23(11):4171. (In Russ.) doi:10.15829/1728-8800-2024-4171. EDN: OLWCVE.
7. Gvaldin DYu, Omelchuk EP, Petrusenko NA, et al. Machine learning models for brain tumors differential diagnosis. The Russian Journal of Preventive Medicine. 2025;28(9):87-93. (In Russ.) doi:10/17116/profmed20252809187.
8. Taylor SC, Nadeau K, Abbasi M, et al. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol. 2019;37(7):761-74. doi:10.1016/j.tibtech.2018.12.002.
9. Soffietti R, Bettegowda C, Mellinghoff IK, et al. Liquid biopsy in gliomas: a RANO review and proposals for clinical applications. Neuro Oncol. 2022;24(6):855-71. doi:10.1093/neuonc/noac004.
10. Karschnia P, Smits M, Reifenberger G, et al. A framework for standardised tissue sampling and processing during resection of diffuse intracranial glioma: joint recommendations from four RANO groups. Lancet Oncol. 2023;24(11):e43850. doi:10.1016/S1470-2045(23)00453-9.
11. Kiel K, Król SK, Bronisz A, et al. MiR-128-3p–a gray eminence of the human central nervous system. Mol Ther Nucleic Acids. 2024;35(1):102141. doi:10.1016/j.omtn.2024.102141.
12. Mishan MA, Tabari MAK, Parnian J, et al. Functional mechanisms of miR‐192 family in cancer. Genes Chromosomes Cancer. 2020; 59(12):722-35. doi:10.1002/gcc.22889.
13. Pourrahimi M, Hesari M, Houshmandpour H, et al. Inducer microRNAs in the glioma development: a concise review of mechanisms and insights into targeted therapy. J Egypt Natl Canc Inst. 2025;37(1):55. doi:10.1186/s43046-025-00308-9.
14. Khayamzadeh M, Niazi V, Hussen BM, et al. Emerging role of extracellular vesicles in the pathogenesis of glioblastoma. Metab Brain Dis. 2023;38(1):177-84. doi:10.1007/s11011-022-01074-6.
15. Yang J, Yu D, Liu X, et al. LncRNA PCED1B-AS1 activates the proliferation and restricts the apoptosis of glioma through cooperating with miR-194-5p/PCED1B axis. J Cell Biochem. 2020;121(2):1823-33. doi:10.1002/jcb.29417.
16. Bi Y, Mao Y, Su Z, et al. Long noncoding RNA HNF1A-AS1 regulates proliferation and apoptosis of glioma through activation of the JNK signaling pathway via miR-363-3p/MAP2K4. J Cell Physiol. 2021;236(2):1068-82. doi:10.1002/jcp.29916.
17. Li T, Ge H, Yang Q, et al. Oncogenic role of microRNA-19b-3p-mediated SOCS3 in glioma through activation of JAK-STAT pathway. Metab Brain Dis. 2023;38(3):945-60. doi:10.1007/s11011-022-01136-9.
18. Wang C, Chen Y, Wang Y, et al. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J Exp Clin Cancer Res. 2019;38(1):371. doi:10.1186/s13046-019-1361-2.
19. Zhao H, Wang Y, Liang C, et al. LncRNA FOXD3-AS1/miR-128-3p axis-mediated IGF2BP3 in glioma stimulates cancer angiogenesis and progression. Folia Neuropathol. 2023;61(2):168-84. doi:10.5114/fn.2023.126862.
20. Fan B, Su B, Song G, et al. miR-363-3p induces EMT via the Wnt/β-catenin pathway in glioma cells by targeting CELF2. J Cell Mol Med. 2021;25(22):10418-29. doi:10.1111/jcmm.16970.
21. Zhang X, Wei C, Li J, et al. MicroRNA-194 represses glioma cell epithelial-to-mesenchymal transition by targeting Bmi1. Oncol Rep. 2017;37(3):1593-600. doi:10.3892/or.2017.5376.
22. Jing Y, Shang-Guan HC, Cai J, et al. Hsa_circ_0059511 promote glioma cell proliferation and migration through hsa-miR-194-5p/HBEGF axis. Cancer Cell Int. 2025;25(1):219. doi:10.1186/s12935-025-03815-w.
23. Jiang G, Dong H, Dong Y, et al. Long non-coding RNA Unigene56159 promotes glioblastoma multiforme cell proliferation and invasion through negatively regulating microRNA-194-5p. Mol Med Rep. 2020;21(2):768-76. doi:10.3892/mmr.2019.10852.
Supplementary files
What is already known about the subject?
- Neuro-oncology biobanks are essential for the development of personalized medicine.
- Circulating small non-coding ribonucleic acids (microRNAs) are promising non-invasive markers of primary brain tumors.
What might this study add?
- Using a biobank of plasma samples from patients with brain tumors, we selected and validated biological markers of the tumor process (circulating microRNAs).
- The expression levels of miR-128-3p, miR-194-5p, miR-19b-3p, and miR-363-3p significantly differentiated the study and control groups.
Review
For citations:
Kit O.I., Timoshkina N.N., Omelchuk E.P., Gvaldin D.Yu., Petrusenko N.A., Novikova I.A., Rostorguev E.E. Search for diagnostic microRNAs for brain tumor identification using a low-temperature plasma bank. Cardiovascular Therapy and Prevention. 2025;24(11):4565. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4565. EDN: PSHXTX
JATS XML

















































