Preview

Cardiovascular Therapy and Prevention

Advanced search

Role of biobanks in studying frequencies of alleles associated with COVID-19 severity and outcome in the Russian population

https://doi.org/10.15829/1728-8800-2025-4570

EDN: SJMHVP

Abstract

Aim. To analyze the frequency and potential association with the severity and outcome of coronavirus disease (COVID-19) of MUC5B rs35705950, TERT rs2736100, TLR3 rs3775290, and TLR7 rs179008 polymorphisms.

Material and methods. The study included blood samples from 4783 patients diagnosed with COVID-19 from the biobank of City Hos­pi­tal № 40 (St. Petersburg). All patients signed informed consent to par­ticipate in the study. Genotyping was performed using real-time poly­me­rase chain reaction. Statistical analysis included Fisher's exact test and multiple regression.

Results. Polymorphism frequencies are comparable with the Genome Aggregation Database (gnomAD). Among all polymorphisms, only the AA genotype of the TLR7 gene showed a significant association with severe COVID-19. Two following potentially significant genotype interactions were also identified: TERT AA + TLR7 T in men and TERT CC + TLR3 CT in women.

Conclusion. The results highlight the value of local biobanks for stu­dying population-­based patterns of allele distribution and identifying genetic factors influencing the course of infectious diseases.

About the Authors

S. V. Apalko
City Hospital № 40 of Kurortny District
Russian Federation

Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706



V. S. Shimansky
City Hospital № 40 of Kurortny District
Russian Federation

Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706



O. S. Popov
City Hospital № 40 of Kurortny District
Russian Federation

Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706



N. N. Sushentseva
City Hospital № 40 of Kurortny District
Russian Federation

Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706



S. V. Mosenko
City Hospital № 40 of Kurortny District
Russian Federation

Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706



A. Yu. Asinovskaya
City Hospital № 40 of Kurortny District
Russian Federation

Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706



S. G. Shcherbak
City Hospital № 40 of Kurortny District
Russian Federation

Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706



References

1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Ge­net. 2016;17(6):333-51. doi:10.1038/nrg.2016.49.

2. Parodi B. Biobanks: A Definition. In: Mascalzoni D (ed). Ethics, Law and Governance of Biobanking. The International Library of Ethics, Law and Technology, vol 14. Springer, Dordrecht. 2015: 15-9. doi:10.1007/978-94-017-9573-9_2.

3. Meshkov AN, Pokrovskaya MS, Glotov AS, et al. From idea to implementation: the development of biobanking in Russia. The Car­diovascular Therapy and Prevention journal’s top contributing institutions: National Association of Biobanks and Biobanking Specialists (NASBIO). Cardiovascular Therapy and Prevention. 2023;22(11):3864. (In Russ.) doi:10.15829/1728-8800-2023-3864.

4. Daw Elbait G, Henschel A, Tay GK, Al Safar HS. A Population-­Specific Major Allele Reference Genome From The United Arab Emirates Population. Front Genet. 2021;12:660428. doi:10.3389/fgene.2021.660428.

5. Nikolaeva LI, Stuchinskaya MD, Dedova AV, et al. Association of po­lymorphic variants of hemostasis genes with the course of COVID-19. Probl Virol. 2023;68(5):445-53. (In Russ.) doi:10.36233/0507-4088-197.

6. Shevchenko AV, Prokofyev VF, Konenkov VI, et al. Association of TLR2, TLR4 and TLR6 gene polymorphisms with SARS-CoV-2 infection in the West Siberian region of Russia. Russian Jour­nal of Infection and Immunity. 2023;13(4):761-78. (In Russ.) doi:10.15789/2220-7619-ABT-17871.

7. Samokhina IV, Sagakyants AB. Work within the COVID-19 pan­demic — the experience of the biobank of the National Medical Re­search Center of Oncology. Cardiovascular Therapy and Pre­vention. 2020;19(6):2741. (In Russ.) doi:10.15829/1728-8800-2020-2741.

8. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN im­mu­nity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi:10.1126/science.abd4570.

9. Silverman JD, Hupert N, Washburne AD. Using influenza sur­veil­lance networks to estimate state-­specific prevalence of SARS-CoV-2 in the United States. Sci Transl Med. 2020; 12(554):eabc1126. doi:10.1126/scitranslmed.abc1126.

10. Glotov OS, Chernov AN, Shcherbak SG, Baranov VS. Genetic risk factors for the development of COVID-19 infection. Genetika. 2021;57(8):871-86. (In Russ.) doi:10.1134/S1022795421080056.

11. Alseoudy MM, Elgamal M, Abdelghany DA, et al. Prognostic im­pact of toll-like receptors gene polymorphism on outcome of COVID-19 pneumonia. Front Genet. 2022;13:660428. doi:10.1016/j.clim.2022.108929.

12. Verma A, Minnier J, Wan ES, et al. A MUC5B Gene Polymorphism, rs35705950-T, Confers Protective Effects Against COVID-19 Hospitalization but Not Severe Disease or Mortality. Am J Respir Crit Care Med. 2022;206(10):1220-9. doi:10.1164/rccm.202109-2166OC.

13. Fadista J, Kraven LM, Karjalainen J, et al. Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. EBioMedicine. 2021;65:103277. doi:10.1016/j.ebiom.2021.103277.

14. Yetkin NA, Kiraz A, Baran Ketençoğlu B, et al. Are MUC5B and TERT mutations genetic risk factors for pulmonary fibrosis in individuals with severe COVID-19? Tuberk Toraks. 2023;71(1):34-40. doi:10.5578/tt.20239905.

15. Al-­Tamimi ZHD, Alta'ee AH, Jasim AH. Effect of Toll-­Like Receptor 7 Gene Polymorphism and ABO Blood Groups on the Severity of COVID-19 Patients. Acta Inform Med. 2022;30(3):191-5. doi:10.5455/aim.2022.30.191-195.

16. Abramova ND, Soshchenko TD, Meremyanina EA, et al. Ex­pres­sion of innate immunity receptors TLR3 and TLR7 in the mucous mem­branes of the upper respiratory tract in patients with severe COVID-19. Therapy. 2023;9(2):7-13. (In Russ.) doi:10.18565/therapy.2023.2.7.

17. García-­Carmona S, Falfán-­Valencia R, Verónica-­Aguilar A, et al. COVID-19 Survivor Patients Carrying the Rs35705950 Risk Allele in MUC5B Have Higher Plasma Levels of Mucin 5B. Curr Issues Mol Biol. 2022;44(8):3283-90. doi:10.3390/cimb44080226.

18. Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3–mediated ac­ti­vation of NF-κB and IRF3 diverges at Toll–IL-1 receptor domain-­containing adapter inducing IFN-β. Proc Natl Acad Sci USA. 2004;101(10):3533-8. doi:10.1073/pnas.0308496101.

19. Ghosh A, Saginc G, Leow SC, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol. 2012;14(12):1270-81. doi:10.1038/ncb2621.

20. Ding D, Xi P, Zhou J, et al. Human telomerase reverse trans­crip­tase regulates MMP expression independently of telomerase ac­tivity via NF-κB-dependent transcription. FASEB J. 2013;27(11): 4375-83. doi:10.1096/fj.13-230904.

21. Mao J, Zhang Q, Wang Y, et al. TERT activates endogenous ret­ro­viruses to promote an immunosuppressive tumour micro­en­vi­ron­ment. EMBO Rep. 2022;23:e52984. doi:10.15252/embr.202152984.

22. Negrini S, De Palma R, Filaci G, et al. Anti-cancer immuno­therapies targeting telomerase. Cancers (Basel). 2020;12(8): 2260. doi:10.3390/cancers12082260.

23. Zareian N, Eremin O, Pandha H, et al. A phase 1 trial of human te­lomerase reverse transcriptase (hTERT) vaccination combined with therapeutic strategies to control immune-­suppressor me­chanisms. Exp Biol Med (Maywood). 2024;249:10021. doi:10.3389/ebm.2024.10021.

24. Bernhardt SL, Buanes T, Stenmark MH, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer. 2006; 95(11):1474-82. doi:10.1038/sj.bjc.6603437.


Supplementary files

What is already known about the subject?

  • Genetic variations in innate immune genes, including TLR receptors, as well as in genes regulating the interferon response and inflammation, may specify the COVID-19 severity. Polymorphisms can influence receptor sensitivity to viral ribonucleic acid, NF-κB activation, and cytokine synthesis. Population differences in allele frequencies limit the applicability of international data to a Russian sample.

What might this study add?

  • The AA TLR7genotype is associated with a more severe COVID-19 course, consistent with its role in viral ribonucleic acid recognition. Genotype-genotype interactions were detected, likely related to the modulation of NF-κB-dependent pathways when TERT gene variants are combined with TLR7 and TLR3. These data highlight the importance of local biobanks for identifying the molecular genetic determinants of severe infection.

Review

For citations:


Apalko S.V., Shimansky V.S., Popov O.S., Sushentseva N.N., Mosenko S.V., Asinovskaya A.Yu., Shcherbak S.G. Role of biobanks in studying frequencies of alleles associated with COVID-19 severity and outcome in the Russian population. Cardiovascular Therapy and Prevention. 2025;24(11):4570. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4570. EDN: SJMHVP

Views: 107

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)