Role of biobanks in studying frequencies of alleles associated with COVID-19 severity and outcome in the Russian population
https://doi.org/10.15829/1728-8800-2025-4570
EDN: SJMHVP
Abstract
Aim. To analyze the frequency and potential association with the severity and outcome of coronavirus disease (COVID-19) of MUC5B rs35705950, TERT rs2736100, TLR3 rs3775290, and TLR7 rs179008 polymorphisms.
Material and methods. The study included blood samples from 4783 patients diagnosed with COVID-19 from the biobank of City Hospital № 40 (St. Petersburg). All patients signed informed consent to participate in the study. Genotyping was performed using real-time polymerase chain reaction. Statistical analysis included Fisher's exact test and multiple regression.
Results. Polymorphism frequencies are comparable with the Genome Aggregation Database (gnomAD). Among all polymorphisms, only the AA genotype of the TLR7 gene showed a significant association with severe COVID-19. Two following potentially significant genotype interactions were also identified: TERT AA + TLR7 T in men and TERT CC + TLR3 CT in women.
Conclusion. The results highlight the value of local biobanks for studying population-based patterns of allele distribution and identifying genetic factors influencing the course of infectious diseases.
About the Authors
S. V. ApalkoRussian Federation
Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706
V. S. Shimansky
Russian Federation
Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706
O. S. Popov
Russian Federation
Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706
N. N. Sushentseva
Russian Federation
Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706
S. V. Mosenko
Russian Federation
Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706
A. Yu. Asinovskaya
Russian Federation
Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706
S. G. Shcherbak
Russian Federation
Borisova St., 9, lit. B, Sestroretsk, Saint Petersburg, 197706
References
1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333-51. doi:10.1038/nrg.2016.49.
2. Parodi B. Biobanks: A Definition. In: Mascalzoni D (ed). Ethics, Law and Governance of Biobanking. The International Library of Ethics, Law and Technology, vol 14. Springer, Dordrecht. 2015: 15-9. doi:10.1007/978-94-017-9573-9_2.
3. Meshkov AN, Pokrovskaya MS, Glotov AS, et al. From idea to implementation: the development of biobanking in Russia. The Cardiovascular Therapy and Prevention journal’s top contributing institutions: National Association of Biobanks and Biobanking Specialists (NASBIO). Cardiovascular Therapy and Prevention. 2023;22(11):3864. (In Russ.) doi:10.15829/1728-8800-2023-3864.
4. Daw Elbait G, Henschel A, Tay GK, Al Safar HS. A Population-Specific Major Allele Reference Genome From The United Arab Emirates Population. Front Genet. 2021;12:660428. doi:10.3389/fgene.2021.660428.
5. Nikolaeva LI, Stuchinskaya MD, Dedova AV, et al. Association of polymorphic variants of hemostasis genes with the course of COVID-19. Probl Virol. 2023;68(5):445-53. (In Russ.) doi:10.36233/0507-4088-197.
6. Shevchenko AV, Prokofyev VF, Konenkov VI, et al. Association of TLR2, TLR4 and TLR6 gene polymorphisms with SARS-CoV-2 infection in the West Siberian region of Russia. Russian Journal of Infection and Immunity. 2023;13(4):761-78. (In Russ.) doi:10.15789/2220-7619-ABT-17871.
7. Samokhina IV, Sagakyants AB. Work within the COVID-19 pandemic — the experience of the biobank of the National Medical Research Center of Oncology. Cardiovascular Therapy and Prevention. 2020;19(6):2741. (In Russ.) doi:10.15829/1728-8800-2020-2741.
8. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi:10.1126/science.abd4570.
9. Silverman JD, Hupert N, Washburne AD. Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States. Sci Transl Med. 2020; 12(554):eabc1126. doi:10.1126/scitranslmed.abc1126.
10. Glotov OS, Chernov AN, Shcherbak SG, Baranov VS. Genetic risk factors for the development of COVID-19 infection. Genetika. 2021;57(8):871-86. (In Russ.) doi:10.1134/S1022795421080056.
11. Alseoudy MM, Elgamal M, Abdelghany DA, et al. Prognostic impact of toll-like receptors gene polymorphism on outcome of COVID-19 pneumonia. Front Genet. 2022;13:660428. doi:10.1016/j.clim.2022.108929.
12. Verma A, Minnier J, Wan ES, et al. A MUC5B Gene Polymorphism, rs35705950-T, Confers Protective Effects Against COVID-19 Hospitalization but Not Severe Disease or Mortality. Am J Respir Crit Care Med. 2022;206(10):1220-9. doi:10.1164/rccm.202109-2166OC.
13. Fadista J, Kraven LM, Karjalainen J, et al. Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. EBioMedicine. 2021;65:103277. doi:10.1016/j.ebiom.2021.103277.
14. Yetkin NA, Kiraz A, Baran Ketençoğlu B, et al. Are MUC5B and TERT mutations genetic risk factors for pulmonary fibrosis in individuals with severe COVID-19? Tuberk Toraks. 2023;71(1):34-40. doi:10.5578/tt.20239905.
15. Al-Tamimi ZHD, Alta'ee AH, Jasim AH. Effect of Toll-Like Receptor 7 Gene Polymorphism and ABO Blood Groups on the Severity of COVID-19 Patients. Acta Inform Med. 2022;30(3):191-5. doi:10.5455/aim.2022.30.191-195.
16. Abramova ND, Soshchenko TD, Meremyanina EA, et al. Expression of innate immunity receptors TLR3 and TLR7 in the mucous membranes of the upper respiratory tract in patients with severe COVID-19. Therapy. 2023;9(2):7-13. (In Russ.) doi:10.18565/therapy.2023.2.7.
17. García-Carmona S, Falfán-Valencia R, Verónica-Aguilar A, et al. COVID-19 Survivor Patients Carrying the Rs35705950 Risk Allele in MUC5B Have Higher Plasma Levels of Mucin 5B. Curr Issues Mol Biol. 2022;44(8):3283-90. doi:10.3390/cimb44080226.
18. Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3–mediated activation of NF-κB and IRF3 diverges at Toll–IL-1 receptor domain-containing adapter inducing IFN-β. Proc Natl Acad Sci USA. 2004;101(10):3533-8. doi:10.1073/pnas.0308496101.
19. Ghosh A, Saginc G, Leow SC, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol. 2012;14(12):1270-81. doi:10.1038/ncb2621.
20. Ding D, Xi P, Zhou J, et al. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J. 2013;27(11): 4375-83. doi:10.1096/fj.13-230904.
21. Mao J, Zhang Q, Wang Y, et al. TERT activates endogenous retroviruses to promote an immunosuppressive tumour microenvironment. EMBO Rep. 2022;23:e52984. doi:10.15252/embr.202152984.
22. Negrini S, De Palma R, Filaci G, et al. Anti-cancer immunotherapies targeting telomerase. Cancers (Basel). 2020;12(8): 2260. doi:10.3390/cancers12082260.
23. Zareian N, Eremin O, Pandha H, et al. A phase 1 trial of human telomerase reverse transcriptase (hTERT) vaccination combined with therapeutic strategies to control immune-suppressor mechanisms. Exp Biol Med (Maywood). 2024;249:10021. doi:10.3389/ebm.2024.10021.
24. Bernhardt SL, Buanes T, Stenmark MH, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer. 2006; 95(11):1474-82. doi:10.1038/sj.bjc.6603437.
Supplementary files
What is already known about the subject?
- Genetic variations in innate immune genes, including TLR receptors, as well as in genes regulating the interferon response and inflammation, may specify the COVID-19 severity. Polymorphisms can influence receptor sensitivity to viral ribonucleic acid, NF-κB activation, and cytokine synthesis. Population differences in allele frequencies limit the applicability of international data to a Russian sample.
What might this study add?
- The AA TLR7genotype is associated with a more severe COVID-19 course, consistent with its role in viral ribonucleic acid recognition. Genotype-genotype interactions were detected, likely related to the modulation of NF-κB-dependent pathways when TERT gene variants are combined with TLR7 and TLR3. These data highlight the importance of local biobanks for identifying the molecular genetic determinants of severe infection.
Review
For citations:
Apalko S.V., Shimansky V.S., Popov O.S., Sushentseva N.N., Mosenko S.V., Asinovskaya A.Yu., Shcherbak S.G. Role of biobanks in studying frequencies of alleles associated with COVID-19 severity and outcome in the Russian population. Cardiovascular Therapy and Prevention. 2025;24(11):4570. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4570. EDN: SJMHVP
JATS XML

















































