Preview

Cardiovascular Therapy and Prevention

Advanced search

Genetic causes of lipid profile variability in familial hypercholesterolemia

https://doi.org/10.15829/1728-8800-2025-4607

EDN: UUGLZK

Abstract

Familial hypercholesterolemia (FH) is one of the most common monogenic diseases in Russia, most often related to causal variants in the LDLR, APOB, and PCSK9 genes. FH is characterized by severe hypercholesterolemia from birth and the early development of coronary atherosclerosis and coronary artery disease. However, in recent years, there is evidence indicating that the phenotype of genetically confirmed FH patients can vary from those with coronary artery disease to those without atherosclerosis. The wide profile of phenotypic manifestations is due to incomplete penetrance and/or variable expressivity of variants in the causal genes. This review demonstrates the main genetic causes of FH and additional genetic factors influencing lipid variability (additional rare and common variants in genes associated with lipid metabolism disorders). Understanding lipid profile variability in FH will help practicing physicians more effectively use genetic diagnostic methods, assess the risk of complications, and personalize treatment.

About the Authors

V. I. Mikhailina
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



M. Zaychenoka
Moscow Institute of Physics and Technology (National Research University)
Россия

Institutskiy Lane, 9, Dolgoprudny, 141701



A. V. Kiseleva
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



А. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine; Chazov National Medical Research Center of Cardiology; Bochkov Research Center for Medical Genetics; Pirogov Russian National Research Medical University
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990,

Akademika Chazova str., 15A, Moscow, 121552,

Moskvorechye str., 1, Moscow, 115522,

Ostrovitianova str., 1, Moscow, 117513



О. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



References

1. Meshkov AN, Malyshev PP, Kukharchuk VV. Familial hyper­cho­les­terolemia in Russia: genetic and phenotypic characteristics. Ter Arkh. 2009;81(9):23-8. (In Russ.)

2. Foody JM, Vishwanath R. Familial hypercholesterolemia/auto­somal dominant hypercholesterolemia: Molecular defects, the LDL-C continuum, and gradients of phenotypic severity. J Clin Lipi­dol. 2016;10(4):970-86. doi:10.1016/j.jacl.2016.04.009.

3. Meshkov AN, Ershova AI, Kiseleva AV, et al. The prevalence of heterozygous familial hypercholesterolemia in selected regions of the Russian federation: The FH-ESSE-RF study. J Pers Med. 2021;11(6):464. doi:10.3390/jpm11060464.

4. Hopkins PN, Toth PP, Ballantyne CM, et al. Familial hyper­cho­les­terolemias: prevalence, genetics, diagnosis and screening re­com­mendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:9-17. doi:10.1016/j.jacl.2011.03.452.

5. Arora S, Kharsa A, Sharma G. Familial hypercholesterolemia: Still an enigma. JACC Case Rep. 2025;30:104755. doi:10.1016/j.jaccas.2025.104755.

6. Filatova A, Vasiluev P, Osipova E, et al. uAUG-creating variant in the LDLR gene causes mild Familial hypercholesterolemia. Hum Genet. 2025;144(9-10):1001-9. doi:10.1007/s00439-025-02770-w.

7. Zakharova IS, Shevchenko AI, Arssan MA, et al. IPSC-derived endothelial cells reveal LDLR dysfunction and dysregulated gene expression profiles in familial hypercholesterolemia. Int J Mol Sci. 2024;25(2):689. doi:10.3390/ijms25020689.

8. Maidman SD, Gurevitz C, Rosenson RS. Digenic overlap syn­drome masquerading as homozygous familial hypercholes­te­ro­lemia. JACC Case Rep. 2025;30(18):104036. doi:10.1016/j.jaccas.2025.104036.

9. Winther M, Shpitzen S, Yaacov O, et al. In search of a genetic ex­pla­nation for LDLc variability in an FH family: common SNPs and a rare mutation in MTTP explain only part of LDL variability in an FH family. J Lipid Res. 2019;60(10):1733-40. doi:10.1194/jlr.M092049.

10. Shakhtshneider E, Ivanoshchuk D, Timoshchenko O, et al. Ana­lysis of rare variants in genes related to lipid metabolism in pa­tients with familial hypercholesterolemia in western Siberia (Russia). J Pers Med. 2021;11(11):1232. doi:10.3390/jpm11111232.

11. Vanhoye X, Bardel C, Rimbert A, et al. A new 165-SNP low-density lipoprotein cholesterol polygenic risk score based on next generation sequencing outperforms previously published scores in routine diagnostics of familial hypercholesterolemia. Transl Res. 2023;255:119-27. doi:10.1016/j.trsl.2022.12.002.

12. Zaychenoka M, Meshkov AN, Kiseleva AV, et al. Use of polygenic risk scores for differential diagnostics for patients with clinical dia­gnosis of familial hypercholesterolemia. Cardiovascular The­ra­py and Prevention. 2024;23(12):4251. (In Russ.) doi:10.15829/1728-8800-2024-4251.

13. Meshkov AN, Zaicenoka M, Mikhailina VI, et al. Genetic factors of familial hypercholesterolemia variability. Medical Genetics. 2025;24(6):98-100. (In Russ.) doi:10.25557/2073-7998.2025.06.98-100.

14. Zaicenoka M, Ramensky VE, Kiseleva AV, et al. On penetrance es­ti­mation in family, clinical, and population cohorts. Circ Ge­nom Precis Med. 2025;18(2):e004816. doi:10.1161/CIRCGEN.124.004816.

15. Gaspar IM, Gaspar A. Variable expression and penetrance in Por­tuguese families with Familial Hypercholesterolemia with mild phe­notype. Atheroscler Suppl. 2019;36:28-30. doi:10.1016/j.atherosclerosissup.2019.01.006.

16. Dikilitas O, Sherafati A, Saadatagah S, et al. Familial hyper­cho­les­terolemia in the electronic medical records and genomics net­work: Prevalence, penetrance, cardiovascular risk, and out­comes after return of results. Circ Genom Precis Med. 2023;16(2): e003816. doi:10.1161/CIRCGEN.122.003816.

17. Goodrich JK, Singer-­Berk M, Son R, et al. Determinants of pe­netrance and variable expressivity in monogenic metabolic con­ditions across 77,184 exomes. Nat Commun. 2021;12(1):3505. doi:10.1038/s41467-021-23556-4.

18. Alieva A, Di Costanzo A, Gazzotti M, et al. Genetic heterogeneity of familial hypercholesterolaemia in two populations from two dif­ferent countries. Eur J Intern Med. 2024;123:65-71. doi:10.1016/j.ejim.2024.01.010.

19. Miroshnikova VV, Pchelina SN, Donnikov MYu, et al. The NGS pa­nel for genetic testing in cardiology: from the evaluation of di­sease risk to pharmacogenetics. Pharmacogenetics and Phar­ma­co­genomics. 2023;(1):7-19. (In Russ.) doi:10.37489/2588-0527-2023-1-7-19.

20. Meshkov A, Ershova A, Kiseleva A, et al. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholes­te­ro­lemia in Russia. Genes (Basel). 2021;12(1):66. doi:10.3390/genes12010066.

21. Miroshnikova VV, Romanova OV, Ivanova ON, et al. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed Rep. 2021;14(1):15. doi:10.3892/br.2020.1391.

22. Sjouke B, Defesche JC, Hartgers ML, et al. Double-­heterozygous autosomal dominant hypercholesterolemia: Clinical charac­te­ri­zation of an underreported disease. J Clin Lipidol. 2016;10(6): 1462-9. doi:10.1016/j.jacl.2016.09.003.

23. Tromp TR, Hartgers ML, Hovingh GK, et al. Worldwide experience of homozygous familial hypercholesterolaemia: retrospective cohort study. Lancet. 2022;399(10326):719-28. doi:10.1016/S0140-6736(21)02001-8.

24. Galicia-­Garcia U, Benito-­Vicente A, Uribe KB, et al. Mutation type classification and pathogenicity assignment of sixteen missense variants located in the EGF-precursor homology domain of the LDLR. Sci Rep. 2020;10(1):1727. doi:10.1038/s41598-020-58734-9.

25. Abifadel M, Boileau C. Genetic and molecular architecture of fa­mi­lial hypercholesterolemia. J Intern Med. 2023;293(2):144-65. doi:10.1111/joim.13577.

26. Vasilyev V, Zakharova F, Bogoslovskay T, et al. Familial hypercho­les­terolemia in Russia: Three decades of genetic studies. Front Genet. 2020;11:550591. doi:10.3389/fgene.2020.550591.

27. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recom­men­dation of the American College of Medical Genetics and Geno­mics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. doi:10.1038/gim.2015.30.

28. Di Taranto MD, Giacobbe C, Fortunato G. Familial hypercho­les­te­ro­lemia: A complex genetic disease with variable pheno­types. Eur J Med Genet. 2020;63(4):103831. doi:10.1016/j.ejmg.2019.103831.

29. Ibrahim S, Hartgers ML, Reeskamp LF, et al. LDLR variant clas­si­fication for improved cardiovascular risk prediction in familial hyper­cho­lesterolemia. Atherosclerosis. 2024;397:117610. doi:10.1016/j.atherosclerosis.2024.117610.

30. Mszar R, Buscher S, Taylor HL, et al. Familial hypercholes­te­rolemia and the founder effect among Franco-­Americans: A brief history and call to action. CJC Open. 2020;2(3):161-7. doi:10.1016/j.cjco.2020.01.003.

31. Karpati M, Gazit E, Goldman B, et al. Specific mutations in the HEXA gene among Iraqi Jewish Tay-­Sachs disease carriers: dating of founder ancestor. Neurogenetics. 2004;5(1):35-40. doi:10.1007/s10048-003-0166-8.

32. Vasilyev VB, Zakharova FM, Bogoslovskaya TY, et al. Analysis of the low density lipoprotein receptor gene (LDLR) mutation spec­trum in Russian familial hypercholesterolemia. Vavilov Journal of Genetics and Breeding. 2022;26(3):319-26. doi:10.18699/VJGB-22-38.

33. Zakharova FM, Tatishcheva YuA, Golubkov VI, et al. Familial hyper­cho­les­terolemia in St. Petersburg: diversity of mutations argues against a strong founder effect. Russian Journal of Genetics. 2007;43(9): 1255-62. (In Russ.)

34. Zakharova FM, Mandelstam MY, Bogoslovskaya TY, et al. Mo­le­cu­lar diagnostics of familial hypercholesterolemia in Rus­sia: yes­ter­day, today and tomorrow. Medical Academic Journal. 2024; 24(1):23-36. (In Russ.) doi:10.17816/maj630505.

35. Innerarity TL, Weisgraber KH, Arnold KS, et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA. 1987;84(19):6919-23. doi:10.1073/pnas.84.19.6919.

36. Dzhumaniiazova IK, Meshkov AN, Daniel VV, et al. Prevalence and penetrance of pathogenic and likely pathogenic LDLR and APOB gene variants linked to familial hypercholesterolemia and increased risk of ischemic heart disease. Front Genet. 2025;16: 1589014. doi:10.3389/fgene.2025.1589014.

37. Meshkov AN, Ershova AI, Shcherbakova NV, et al. Phenotypical features of heterozygous familial hypercholesterolemia in indi­vi­duals with LDLR or APOB gene mutations. Cardiovascular The­rapy and Prevention. 2011;10(8):63-5. (In Russ.)

38. Dron JS, Hegele RA. Complexity of mechanisms among human proprotein convertase subtilisin-­kexin type 9 variants. Curr Opin Lipidol. 2017;28(2):161-9. doi:10.1097/MOL.0000000000000386.

39. Rämö JT, Jurgens SJ, Kany S, et al. Rare genetic variants in LDLR, APOB, and PCSK9 are associated with aortic stenosis. Circulation. 2024;150(22):1767-80. doi:10.1161/CIRCULATIONAHA.124.070982.

40. He G, Gupta S, Yi M, et al. ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem. 2002;277(46):44044-9. doi:10.1074/jbc.M208539200.

41. Pisciotta L, Priore Oliva C, Pes GM, et al. Autosomal recessive hyper­cholesterolemia (ARH) and homozygous familial hyper­cholesterolemia (FH): a phenotypic comparison. Atherosclerosis. 2006;188(2):398-405. doi:10.1016/j.atherosclerosis.2005.11.016.

42. Marduel M, Ouguerram K, Serre V, et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation. Hum Mutat. 2013;34(1):83-7. doi:10.1002/humu.22215.

43. Cenarro A, Etxebarria A, de Castro-­Orós I, et al. The p.Leu167del mutation in APOE gene causes autosomal domi­nant hyper­cho­lesterolemia by down-regulation of LDL recep­tor expression in hepatocytes. J Clin Endocrinol Metab. 2016;101(5):2113-21. doi:10.1210/jc.2015-3874.

44. Blokhina AV, Ershova AI, Kiseleva AV, et al. Spectrum and pre­valence of rare APOE variants and their association with familial dys­betalipoproteinemia. Int J Mol Sci. 2024;25(23):12651.doi:10.3390/ijms252312651.

45. Limonova AS, Ershova AI, Kiseleva AV, et al. Validation of genetic risk scores for hypertension in the Central Russian population. Cardiovascular Therapy and Prevention. 2023;22(12):3801. (In Russ.) doi:10.15829/1728-8800-2023-3801.

46. Zaichenoka M., Ershova AI, Kiseleva AV, et al. Search and repli­ca­tion of associations of genome variants with lipid levels in a Rus­sian sample. Cardiovascular Therapy and Prevention. 2023; 22(12):3871. (In Russ.) doi:10.15829/1728-8800-2023-3871.

47. Zaicenoka M, Ershova AI, Kiseleva AV, et al. Blood lipid polygenic risk score development and application for atherosclerosis ultra­sound parameters. Biomedicines. 2024;12(12):2798. doi:10.3390/biomedicines12122798.

48. Meshkov AN, Kiseleva AV, Ershova AI, et al. ANGPTL3, ANGPTL4, APOA5, APOB, APOC2, APOC3, LDLR, PCSK9, LPL gene variants and coronary artery disease risk. Russian Journal of Cardiology. 2022;27(10):5232. (In Russ.) doi:10.15829/1560-4071-2022-5232.

49. Reeskamp LF, Shim I, Dron JS, et al. Polygenic background modifies risk of coronary artery disease among individuals with heterozygous familial hypercholesterolemia. JACC Adv. 2023;2(9):100662. doi:10.1016/j.jacadv.2023.100662.

50. Kındış E, Aygün S, Ertürk B, et al. Investigation of the genetic background of familial hypercholesterolemia in a Turkish cohort and its clinical implications. J Clin Lipidol. 2025;19(3):572-81. doi:10.1016/j.jacl.2025.02.016.

51. Asiimwe IG, Jorgensen AL, Pirmohamed M, et al. APOE genotype and statin response: Evidence from the UK Biobank and all of Us pro­gram. Clin Transl Sci. 2025;18(8):e70314. doi:10.1111/cts.70314.

52. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants asso­ciated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518-28. doi:10.1056/NEJMoa0902604.

53. Ezhov MV, Kukharchuk VV, Sergienko IV, et al. Disorders of li­pid metabolism. Clinical Guidelines 2023. Russian Journal of Car­dio­logy. 2023;28(5):5471. (In Russ.) doi:10.15829/1560-4071-2023-5471.

54. Chubykina U, Vasiluev P, Ivanova O, et al. The mysterious masks of hy­percholesterolemia: A unique clinical case. Circulation. 2025; 151(11):799-803. doi:10.1161/CIRCULATIONAHA.124.071638.

55. Nomura A, Emdin CA, Won HH, et al. Heterozygous ABCG5 gene deficiency and risk of coronary artery disease. Circ Genom Precis Med. 2020;13(5):417-23. doi:10.1161/CIRCGEN.119.002871.

56. Othman RA, Myrie SB, Mymin D, et al. Effect of ezetimibe on low- and high-density lipoprotein subclasses in sitoste­ro­le­mia. Atherosclerosis. 2017;260:27-33. doi:10.1016/j.atherosclerosis.2017.03.015.

57. Meshkov AN, Ershova AI, Kiseleva AV, et al. Genetic aspects of decreased low-density lipoprotein cholesterol values. Car­dio­vascular Therapy and Prevention. 2023;22(12):3846. (In Russ.) doi:10.15829/1728-8800-2023-3846.

58. Sasaki K, Tada H, Kawashiri M-A, et al. Case report: Unusual coexistence between familial hypercholesterolemia and familial hypobetalipoproteinemia. Front Cardiovasc Med. 2022;8:9: 942772. doi:10.3389/fcvm.2022.942772.

59. Cohen JC, Boerwinkle E, Mosley TH Jr, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart di­sease. N Engl J Med. 2006;354(12):1264-72. doi:10.1056/NEJMoa054013.

60. Abifadel M, Rabès J-P, Jambart S, et al. The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mu­ta­tions and role of PCSK9 as a modifier gene. Hum Mutat. 2009; 30(7):E682-91. doi:10.1002/humu.21002.

61. Huijgen R, Sjouke B, Vis K, et al. Genetic variation in APOB, PCSK9, and ANGPTL3 in carriers of pathogenic autosomal do­mi­nant hypercholesterolemic mutations with unexpected low LDL-Cl Levels. Hum Mutat. 2012;33(2):448-55. doi:10.1002/humu.21660.

62. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22-31. doi:10.1056/NEJMoa1307095.

63. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51(2):165-76. doi:10.1016/j.pathol.2018.11.002.


Review

For citations:


Mikhailina V.I., Zaychenoka M., Kiseleva A.V., Meshkov А.N., Drapkina О.M. Genetic causes of lipid profile variability in familial hypercholesterolemia. Cardiovascular Therapy and Prevention. 2025;24(12):4607. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4607. EDN: UUGLZK

Views: 33

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)