Role of hypertension in early vascular aging
https://doi.org/10.15829/1728-8800-2025-4626
EDN: BUZOBA
Abstract
Aim. To study possible clinical and laboratory candidate markers involved in the early vascular aging in patients with hypertension (HTN).
Material and methods. In young and middle-aged men (aged 25 to 55 years) with grade 1-2 HTN and no significant vascular atherosclerosis, the aging rate coefficient was determined by Gorelkin A. G. and Pinkhasov B. B. method. Then the biological age was calculated. The following parameters were assessed: lipid profile, high-sensitivity C-reactive protein (hsCRP), platelet P-selectin, common carotid artery (CCA) intima-media thickness (IMT), flow-mediated vasodilation, 24-hour blood pressure monitoring data, volume sphygmography — cardioankle vascular index (CAVI), photoplethysmography (PPG) — stiffness index (SI), reflection index (RI), estimated augmentation index adjusted for a heart rate of 75 bpm (Alp75), and vascular age (VA).
Results. The aging rate coefficient was significantly higher in individuals with HTN and corresponded to an accelerated aging rate. Median values of CCA IMT, SI, RI, Alp75, VA, CAVI, very-low-density lipoprotein cholesterol (VLDL-C), triglycerides, and hs-CRP were significantly higher in patients with HTN compared to non-hypertensive individuals. HTN was associated with significantly (p<0,05) higher levels of platelet P-selectin.
Conclusion. Parameters of PPG (SI, Alp75), volumetric sphygmography (CAVI), Doppler ultrasound (CCA IMT), lipid profile (VLDL-C, triglycerides), and hs-CRP were higher in patients with HTN, while remaining within normal limits, compared to non-hypertensive individuals (comparison group). According to PPG, RI in patients with HTN exceeded the norm (N<30%) and was significantly (p<0,001) higher than in the comparison group. These data make it possible to consider these indicators as promising markers reflecting vascular stiffness.
About the Authors
A. A. SavichevaРоссия
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
S. A. Berns
Россия
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
S. A. Shalnova
Россия
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
А. E. Imaeva
Россия
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
O. Yu. Isaykina
Россия
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
A. Yu. Gorshkov
Россия
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
M. A. Panteleev
Россия
Samory Mashela str., 1, Moscow, 117198,
Leninskie Gory, 1, Moscow, 119991
O. M. Drapkina
Россия
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
References
1. Balanova YuA, Kontsevaya AV, Myrzamatova AO, et al. Economic Burden of Hypertension in the Russian Federation. Rational Pharmacotherapy in Cardiology. 2020;16(3):415-23. (In Russ.) doi:10.20996/1819-6446-2020-05-03.
2. Balanova YuA, Drapkina OM, Kutsenko VA, et al. Hypertension in the Russian population during the COVID-19 pandemic: sex differences in prevalence, treatment and its effectiveness. Data from the ESSE-RF3 study. Cardiovascular Therapy and Prevention. 2023;22(8S): 3785. (In Russ.) doi:10.15829/1728-8800-2023-3785.
3. Martyanov AA, Boldova AE, Stepanyan MG, et al. Longitudinal multiparametric characterization of platelet dysfunction in COVID-19: Effects of disease severity, anticoagulation therapy and inflammatory status. Thromb Res. 2022;211:27-37. doi:10.1016/j.thromres.2022.01.013.
4. Kobalava ZhD, Konradi AO, Nedogoda SV, et al. 2024 Clinical practice guidelines for Hypertension in adults. Russian Journal of Cardiology. 2024;29(9):6117. (In Russ.) doi:10.15829/1560-4071-2024-6117.
5. Humphrey JD, Harrison DG, Figueroa CA, et al. Central artery stiffness in hypertension and aging. Circ Res. 2016;118:37981. doi:10.1161/circresaha.115.307722.
6. Nagayama D, Watanabe Y, Saiki A, et al. Difference in positive relation between cardio-ankle vascular index (CAVI) and each of four blood pressure indices in real-world Japanese population. J Hum Hypertens. 2019;33(3):210-7. doi:10.1038/s41371-019-0167-1.
7. Shirai K, Utino J, Otsuka K, et al. A novel blood pressure-independent arterial wall stiffness parameter: cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006;13:101-7. doi:10.5551/jat.13.101.
8. Tuktarov AM, Kazanceva TS, Filippov AE, et al. The Relationship of Modifiable Risk Factors with Indicators of Arterial Stiffness and Vascular Age in Patients with Arterial Hypertension. Rational Pharmacotherapy in Cardiology. 2021;17(1):42-8. (In Russ.) doi:10.20996/1819-6446-2021-02-12.
9. Kovalev DYu. Analysis of the photoplethysmographic curve in patients with arterial hypertension. Bulletin of the Smolensk State Medical Academy. 2008;2:29-30. (In Russ.)
10. Abdullah S, Kristoffersson A. Machine learning approaches for cardiovascular hypertension stage estimation using photoplethysmography and clinical features. Front Cardiovasc Med. 2023;10: 1285066. doi:10.3389/fcvm.2023.1285066.
11. Zhatkina MV, Gavrilova NE, Makarova YuK, et al. Diagnosis of multifocal atherosclerosis using the Celermajer test. Cardiovascular Therapy and Prevention. 2020;19(5):2638. (In Russ.) doi:10.15829/1728-8800-2020-2638.
12. Kade AH, Zanin SA, Gubareva EA, et al. Physiological functions of vascular endothelium. Basic researches. 2011;11(3):611-7. (In Russ.)
13. Gurfinkel YuI, Katse NV, Parfenova LM, et al. Pulse wave velocity and endothelial function comparison in healthy people and cardiovascular patients. Russian Journal of Cardiology. 2009;(2):38-43. (In Russ.)
14. Wang H, Mo Z, Sui H, et al. Association of baseline and dynamic arterial stiffness status with dyslipidemia: a cohort study. Front Endocrinol (Lausanne). 2023;14:1243673. doi:10.3389/fendo.2023.1243673.
15. Li J, Ye P, Peng X, et al. The roles of lipids and inflammation in the association between the triglyceride-glucose index and arterial stiffness: evidence from two large population-based surveys. Lipids Health Dis. 2024;23(1):190. doi:10.1186/s12944-024-02183-0.
16. Neri T, Nieri D, Celi A. P-selectin blockade in COVID-19-related ARDS. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1237-8. doi:10.1152/ajplung.00202.2020.
17. Frenette PS, Denis CV, Weiss L, et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med. 2000;191(8):1413-22. doi:10.1084/jem.191.8.1413.
18. Kalinin RE, Korotkova NV, Suchkov IA, et al. Selectins and their involvement in the pathogenesis of cardiovascular diseases. Kazan medical journal. 2022;103(4):617-27. (In Russ). doi:10.17816/KMJ2022-617.
19. Liu G, Liang B, Song X, et al. P-selectin increases angiotensin II-induced cardiac inflammation and fibrosis via platelet activation. Mol Med Rep. 2016;13(6):5021-8. doi:10.3892/mmr.2016.5186.
20. Spencer CG, Gurney D, Blann AD, et al. Von Willebrand factor, soluble P-selectin, and target organ damage in hypertension: A substudy of the angloscandinavian cardiac outcomes trial (ASCOT) Hypertension. 2002;40:61-6. doi:10.1161/01.HYP.0000022061.12297.2E.
Review
For citations:
Savicheva A.A., Berns S.A., Shalnova S.A., Imaeva А.E., Isaykina O.Yu., Gorshkov A.Yu., Panteleev M.A., Drapkina O.M. Role of hypertension in early vascular aging. Cardiovascular Therapy and Prevention. 2025;24(12):4626. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4626. EDN: BUZOBA
JATS XML

















































