Preview

Cardiovascular Therapy and Prevention

Advanced search

DIAGNOSTIC SIGNIFICANCE OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN PATIENTS WITH PRIMARY MITRAL VALVE PROLAPSE

https://doi.org/10.15829/1728-8800-2017-6-105-110

Abstract

Aim. To evaluate diagnostic significance of the type A vascular endothelial growth factor (VEGF-A) and its receptors type 1 and 2 (VEGF-R1 and VEGF-R2) in primary mitral valve prolapse (MVP) patients.

Material and methods. Totally, 83 MVP patients studied: 61 males, 22 females; mean age 21,93±4,22 y. o. The signs of systemic inflammation were assessed, as the grade of connective tissue involvement. Immune enzyme analysis was done for serum levels of VEGF-А, VEGF-R1 and VEGF-R2 (“Bender MedSystems GmbH”,Austria). Controls included 20 healthy volunteers — 14 males, 6 females, mean age 21,10±0,55 y. o. with no MVP and any other dysplastic features.

Results. In the MVP group, the decreased levels of circulating VEGF-R1 were found, as the increase of cases number of high (42,17%) and low (32,53%) concentration of VEGF-А. In low levels of VEGF-A and VEGF-A/ VEGF-R1 prevalence of grade II mitral regurgitation increases 5,1 times comparing to the group of retained balance of VEGF-A and VEGF-R1 — 95% confidence interval (CI) 1,25-20,88, and the prevalence of clinically significant cardiac rhythm and conduction disorders increases 5,25 times in comparison to the cases with elevated VEGF-A and VEGF-R1 — 95% CI 1,33-20,76 and 4,09 times — comparing MVP patients with retained balance of VEGF-A and VEGF-R1 — 95% CI 1,18-14,17.

Conclusion. In primary MVP patients, regardless clinical phenotype of monogenic hereditary syndromes, the heterogeneity of deviation and regulation of VEGF has been established. Highest number of II grade mitral regurgitation, significant rhythm disorders was found in the group with low VEGF-A and VEGF-A/VEGF-R1, that might be implemented as optimized risk stratification in heterogenic MVP patients population.

About the Authors

A. V. Yagoda
FSBEI HE Stavropolsky State Medical University of the Ministry of Health
Russian Federation
Stavropol


N. N. Gladkikh
FSBEI HE Stavropolsky State Medical University of the Ministry of Health
Russian Federation
Stavropol


Т. E. Zangelova
SBHI SK Stavropolsky Kray Clinical Hospital
Russian Federation
Stavropol


References

1. Hereditary connective tissue disorders in cardiology. Diagnosis and treatment. National guideline (first revision). Russ J Cardiol 2013; 1 Suppl. 1: 1–32. Russian (Наследственные нарушения соединительной ткани в кардиологии. Диагностика и лечение. Российские рекомендации, I пересмотр. Российский кардиологический журнал 2013; 1 Прил. 1: 1–32).

2. Structural abnormalities of the heart. Supranational (international) recommendations. Minsk, 2016. p. 112. Russian (Структурные аномалии сердца. Наднациональные (международные) рекомендации. Минск, 2016. с. 112).

3. Zemcovskij JeV. Mitral valve prolapse. SPb.: Obshhestvo «Znanie» Sankt-Peterburga i Leningradskoj oblasti, 2010. р. 160. Russian (Земцовский Э. В. Пролапс митрального клапана. СПб.: Общество «Знание» Санкт-Петербурга и Ленинградской области, 2010. с. 160).

4. Rudoj AS, Pashkevich PP. Prevalence and topical questions of military-medical examination of mitral valve prolapse. Voennaja medicina 2011; 1: 36–41. Russian (Рудой А. С., Пашкевич П. П. Распространенность и актуальные вопросы военно-врачебной экспертизы пролапса митрального клапана. Военная медицина 2011; 1: 36–41).

5. Jagoda AV, Gladkih NN, Gladkih LN. Assessment of clinical status of patient with connective tissue dysplasia: prognostically oriented approach. Terapija 2016; 3(17): 26–31. Russian (Ягода А. В., Гладких Н. Н., Гладких Л. Н. Оценка клинического статуса пациента с дисплазией соединительной ткани: прогностически ориентированный подход. Терапия 2016; 3(17): 26–31).

6. Malev JeG, Zemcovskij JeV, Omel'chenko MJu, et al. Role of transforming β-growth factor in pathogenesis of mitral valve prolapse. Kardiologiia 2012; 12: 34–9. Russian (Малев Э. Г., Земцовский Э. В., Омельченко М. Ю. и др. Роль трансформирующего β-фактора роста в патогенезе пролапса митрального клапана. Кардиология 2012; 12: 34–9).

7. Gladkih NN. Mitral valve prolapse: clinical and pathogenetic analysis from the perspective of connective tissue dysplasia: author's abstract of diss. Stavropol. 2009. p. 40. Russian (Гладких Н. Н. Пролапс митрального клапана: клинико-патогенетический анализ с позиции дисплазии соединительной ткани: автореф. дис. … д-ра мед. наук. Ставрополь, 2009. с. 40).

8. Murakami M, Nguyen LT, Hatanaka K, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest 2011; 121(7): 2668–78.

9. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2009; 29(6): 789–91.

10. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. Journal of Biochemistry 2013; 153(1): 13–9.

11. Lingaraj K, Wang W. Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Annals Academy of Medicine 2010; 39(5): 23–8.

12. Murata M, Yudoh K, Masuko K. The potential role of vascular endothelial growth factor (VEGF) in cartilage: How the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis Cartilage 2008; 16: 279–86.

13. Chumakova OS, Tipteva TA, Reznichenko NE, et al. Association of hypertension complicated with cardiac hypertrophy and cardiac insufficiency, with lower levels of vascular endothelial growth factor of vessels (VEGF-A165) in serum. Kardiologiia 2015; 10: 14–8. Russian (Чумакова О. С., Типтева Т. А., Резниченко Н. Е. и др. Ассоциация артериальной гипертензии, осложненной гипертрофией миокарда и сердечной недостаточностью, с более низкими уровнями фактора роста эндотелия сосудов (VEGF-А165) в сыворотке крови. Кардиология 2015; 10: 14–8).

14. Semenkin AA, Drokina OV, Nechaeva GI, et al. Undifferentiated connective tissue dysplasia as an independent predictor of structural and functional changes of arteries. Cardiovascular Therapy and Prevention 2013; 3: 29–34. Russian (Семенкин А. А., Дрокина О. В., Нечаева Г. И. и др. Недифференцированная дисплазия соединительной ткани как независимый предиктор структурно-функциональных изменений артерий. Кардиоваскулярная терапия и профилактика 2013; 3: 29–34).

15. Shodikulova GZ. Effect of L-arginine on endothelial dysfunction in patients with congenital mitral valve prolapse. Kazanskij medicinskij zhurnal 2014; 3(95): 326–31. Russian (Шодикулова Г. З. Влияние L-аргинина на дисфункцию эндотелия у больных с врожденным пролапсом митрального клапана. Казанский медицинский журнал 2014; 3(95): 326–31).


Review

For citations:


Yagoda A.V., Gladkikh N.N., Zangelova Т.E. DIAGNOSTIC SIGNIFICANCE OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN PATIENTS WITH PRIMARY MITRAL VALVE PROLAPSE. Cardiovascular Therapy and Prevention. 2017;16(6):105-110. (In Russ.) https://doi.org/10.15829/1728-8800-2017-6-105-110

Views: 820


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)