Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

ОБЩИЕ ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ АТЕРОСКЛЕРОЗА И ОСТЕОПОРОЗА: ЭЛАСТИЧНОСТЬ АРТЕРИАЛЬНОЙ СТЕНКИ И МИНЕРАЛЬНАЯ ПЛОТНОСТЬ КОСТИ В ЗАВИСИМОСТИ ОТ НЕКОТОРЫХ ПАРАМЕТРОВ РЕПЛИКАТИВНОГО КЛЕТОЧНОГО СТАРЕНИЯ

https://doi.org/10.15829/1728-8800-2014-5-83-93

Полный текст:

Аннотация

В обзоре представлены общие патогенетические механизмы раз- вития атеросклероза и остеопороза, нарушений эластичности сосудистой стенки со снижением костной массы и изменениями костного метаболизма. Обсуждаются результаты клинических исследований по изучению связи сосудистой кальцификации, параметров сосудистой ригидности и прочности костной ткани. Наличие общих патогенетических механизмов у возраст-зависимых заболеваний с участием одних и тех же молекулярных маркеров и выраженной генетической детерминации минеральной плотности кости и сосудистой кальцификации создает предпосылки для поиска общих клеточных маркеров раннего старения сосудов и костной ткани. Поскольку клиническая оценка процесса старения и возрастных заболеваний связана с определенными сложностями в связи с их бессимптомным течением, в последнее время большое внимание исследователей уделяется различным информативным биомаркерам старения и оценке риска возникновения и прогнозирования исхода заболеваний. На роль таких общих клеточных маркеров, которые довольно просто исследовать в лейкоцитах крови, претендуют теломеры (длина теломер) и активность теломеразы. 

Об авторах

И. А. Скрипникова
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия

д. м.н., руководитель отдела профилактики остеопороза

Тел./факс: 8(495) 624-89-66 



Н. А. Алиханова
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия
старший лаборант отдела


Э. С. Абирова
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия

к. м.н., старший научный сотрудник отдела



Список литературы

1. Oganov RG, Maslennikova GYa. Mortality from cardiovascular and other chronic non-communicable diseases among the working population in Russian. Cardiovascular Therapy and Prevention 2002; 3: 4-8. Russian (Оганов Р. Г., Масленникова Г.Я. Смертность от сердечно-сосудистых и других неин- фекционных заболеваний среди трудоспособного населения России. Кардиоваскулярная терапия и профилактика 2002; 3: 4-8).

2. Skripnikova IA, Oganov RG. Osteoporosis and cardiovascular disease due to atherosclerosis in postmenopausal women: a commynite behavioral and social risk factors. Osteoporosis and osteopathy. 2009; 2: 5-9. Russian (Скрипникова И.А., Оганов Р. Г. Остеопороз и сердечно-сосудистые заболевания, обусловленные атеросклерозом, у женщин постменопаузального периода: общность пове- денческих и социальных факторов риска. Остеопороз и остеопатии 2009; 2: 5-9).

3. den Uyl D, Nurmohamed MT, van Tuyl LHD, et al. (Sub)clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis. Arthritis Res Ther 2011; 13: R5.

4. Mangiafico RA, Alagona C, Pennisi P. Increased augmentation index and central aortic blood pressure in osteoporotic postmenopausal women. Osteoporos Int 2008; 19: 49-56.

5. Greenland P, Bonow RO, Brundage BH, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of American College of Cardiology Faundation Clinical expert Consensus Tack Force. Circulation 2007; 115: 402-26.

6. Marcovitz PA, Tran HH, Franklin BA, et al. Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 2005; 96-8; 15: 1059-63.

7. Sanros LL, Cavalcanti TB, Bandeira FB. Vascular effects of bisphosphonates – a systematic review. Clinical Medicine Insights: Endocrinology and Diabetes 2012; 5: 47-54.

8. Lampropoulos CE, Papaioannou I, Cruz D. Osteoporosis – a risk factor for cardiovascular disease. Nat. Rev. Rheumatol 2012; 8: 587-98.

9. Watson KE, Bostrom K, Ravindranath R, et al. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like cells to calcify. J Clin Invest 1994; 93: 2106-13.

10. Proudfoot D, Shanahan CM. Biology of calcification in vascular cells: intima versus media. Herz 2001; 26(4): 245-51.

11. Tintut Y, Demer LL. Recent advances in multifactorial regulation of vascular calcification. Curr Opin Lipidol 2001; 12: 555-60.

12. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocrrev 2008; 29: 155-92.

13. Kiechl S, Schett G, Scwaiger J, et al. Soluble receptor activator of nuclear factor￾kappa B ligand and risk for cardiovascular disease. Circulation 2007; 116: 385-91.

14. Shargorodsky M. Osteoprotegerin as an independent marker of subclinical atherosclerosis in osteoporotic postmenopausal women. Atherosclerosis 2009; 204: 608-11.

15. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science 2002; 296: 1646-7.

16. Shao JS, Cheng SL, Sadhu J. Inflamation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 2010; 55: 579-92.

17. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am. J. Physiol. Endocrinol Metab 2004; 286: 686-96.

18. Kadoglou NP, Gerasimidis T, Golemati S, et al. The relationship between serum levels of vascular calcification inhibitors and carotid plaque vulnerability. J Vasc Surg 2008; 47: 55-62.

19. Veverka V, Henry AJ, Slocombe PM, et al. Characterization of the structural features and interaction of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem 2009; 284: 10890-900.

20. Ueland T, Gullestad L, Dahl CP, et al. Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J Intern Med 2010; 268: 483-92.

21. Shea MK, O’Donnell CJ, Hoffmann U, et al. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr 2009; 19: 1799-807.

22. Hruska KA, Mathew S, Lund R, et al. Hyperphosphatemia of chronic kidney disease. Kidney Int 2008; 74: 148-57.

23. Huang MS, Sage AP, Lu J, et al. Phosphate and pyrophosphate mediate PKA-induced vascular cell calcification. Biochem Biophys Res Commun 2008; 374: 553-8.

24. Demer LL. A skeleton in the atherosclerosis closet. Circulation 1995; 92: 2019-32.

25. Somjen D, Weisman Y, Kohen F, et al. 25-hydroxyvitamin D3-1 alpha hydroxylase is expressed in human vascular smooth muscle sells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation 2005; 111: 1666-71.

26. Parhamy F, Tintut Y, Beamer WG, et al. Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res 2001; 16: 182-8.

27. Parhamy F, Morrow FD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. Apossible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Tromb Vasc Biol 1997; 17: 680-7.

28. Adami S, Braga V, Zamboni M, et al. Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int 2004; 74(2): 136-42.

29. Рtichkina PA, Skripnikova IA, Abirova ES, et al. Lipid profile and body composition in postmenopausal women. Preventive medizine 2012; 15(6): 36-40. Russian (Птичкина П.А., Скрипникова И.А., Абирова Э. С. и др. Липидный профиль и состав тела у женщин в постменопаузе. Профилактическая медицина 2012; 15(6): 36-40).

30. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens 2006; 24: 581-9.

31. Peters R, Beckett N, Burch L, et al. The effect of treatment based on a diuretic (indapamide) +/- ACE inhibitor (perindopril) on fractures in the Hypertension in the Very Elderly Trial (HYVET). Age Ageing 2010; 39(5): 609-16.

32. Doherty TM, Asotra K, Fitzpatrick LA, et al. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proceed Nation Acad Sciences USA 2003; 100(20): 11201-6.

33. Doherty TM, Fitzpatrick LA, Inoue D, et al. Molecular, endocrin end genetic mechanisms of arterial calcification. Endocrine Reviews 2004; 25 (4): 629-72.

34. Doherty TM, Detrano RC. Coronary arterial calcification as an active process: a new perspective on an old problem. Calcif Tissue Int 1994; 54: 224-30.

35. Qiao J-H, Tripathi J, Mishra NK, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathology 1997; 150(5): 1687-99.

36. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93(2): 165-76.

37. Min H, Morony S, Sarosi I, et al. Osteoprotegerin reverses osteoporosis by inhibing endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 2000; 192: 463-74.

38. Kanasawa I, Yamaguchi T, Hayashi K, et al. Effects of treatment with risedronate and alfacalcidol on progression of atherosclerosis in postmenopausal women with type 2 diabetes mellitus accompanied with osteoporosis. Am L Med Sci 2010; 339: 519-24.

39. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term Prognosis associated with coronary calcification: observations from a registry of 25,243 patients. JACC 2007; 49(18): 1860-70.

40. Hyder JA, Allison MA, Wong N, et al. Association of coronary artery and aortic calcium with lumbar bone dencsity: the MESA Abdominal aortic Calcium Study. Am J Epidemiol 2009; 169: 186-94.

41. Choi SH, An JH, Lim S, et al. Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre and postmenopausal women. Clin Endocrinol 2009; 71: 644-51.

42. Hak AE, Pols HA, van Hemert AM, et al. Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Tromb Biol 2000; 20: 1926-31.

43. Kiel DP, Kauppila L, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 2001; 68: 271-6.

44. Samelson EJ, Cupples LA, Broe KE, et al. Vascular calcification in middle-age and long-term risk of hip fracture: the Framingham Study. J Bone Miner Res 2007; 22: 1449-54.

45. Adragao T, Herberth J, Monier-Faugere MC, et al. Low bone volume – a risk factor for coronary calcification in hemodialysis patients. Clin J Am Soc Nephrol 2009; 4: 350-5.

46. Uyama O, Yoshimoto Y, Yamamoto Y, et al. Bone changes and carotid atherosclerosis and lumbar spine bone miner density in postmenopausal women. Stroke 1997; 28: 1730–2.

47. Sumino H, Ichikawa S, Kasama S, et al. Relationship between carotid atherosclerosis and lumbar spine bone miner density in postmenopausal women. Hypertens Res 2008; 31: 1191-7.

48. Frost ML, Grella R, Millasseau SC, et al. Relationship of calcification of atherosclerotic plaque and arterial stiffness to bone mineral density and osteoprotegerin in postmenopausal women referred for osteoporosis screening. Calciff Tissue Int 2008; 83: 112-20.

49. Tamaki J, Iki M, Hirano Y, et al. Low bone mass is associated with carotid atherosclerosis in postmenopausal women: the Japanese Population-based osteoporosis (JPOS) Cohort Study. Osteoporos Int 2009; 20: 53-60.

50. Laurent S, Cockcroft JR, Van Bortel L , et al. Expert consensus document on arterial stiffness: metodological issues and clinical applications. Eur Heart J 2006; 27: 258-65.

51. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic rewiew and mata-analysis. JACC 2010; 55: 1318-27.

52. Cecelia M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension 2009; 54: 1328-36.

53. Farrar DJ, Bond MG, Riley WA. Anatomic correlation of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in mankeys. Circulation 1991; 83: 1754-63.

54. Zireik M, Temmar M, Adamopoulos C, et al. Carotid plaques, but not common carotid intima-media thickness, are independently associated with aortic stiffness. J Hypertens 2002; 20: 85-93.

55. Cecelia M, Jiang B, Bevan L, et al. Arterial stiffnees relates to arterial calcification but not to noncalcified atheroma in women. JACC 2011; 57(13): 1480-6.

56. Sumino H, Ichikawa S, Kasama S, et al. Elevated arterial stiffness in postmenopausal women with ostoporosis. Maturitas 2006; 55: 212-8.

57. Sabit R, Bolton CE, Edwards PH, et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary desease. Am J Respir Crit Care Med 2007; 175: 1259-65.

58. Benetos A, Okuda K, Lajemi M, et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001; 37: 381-5.

59. Wilson WR, Herbert KE, Mistry Y, et al. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J 2008; 29(21): 2689-94.

60. Willeit P, Willeit J, Mayr A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease rick. Arteriosclerosis, Thrombosis, and Vascular Biologi 2010; 30(8): 1649-56.

61. Yudoh K, Matsuno H, Nakazawa F, et al. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res 2001; 16(8):1453-64.

62. Valdes AM, Richards JB, Gardner JP, et al. Telomere lenght in leucocytes correlates with bone mineral density and is shorter in women with ostwoporosis. Osteoporos Int 2007; 18: 1203-10.

63. Saeed H, Abdallah BM, Ditzel N, et al. Telomerase-deficient mice exhibit bone loss owing to detects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res 2011; 26(7): 1494-505.

64. Ehrlenbach S, Willeit P, Kiechl SA. Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: Introduction of a well-controlled high-throughput assay. Int J Epidemiol 2009; 38: 1725-34.

65. Fitzpatrick AL, Kronmal RA, Kimura M. Leukocyte telomere length and mortality in the cardiovascular health study. J Gerontol Biol Sci Med 2011; 66: 421-9.


Для цитирования:


Скрипникова И.А., Алиханова Н.А., Абирова Э.С. ОБЩИЕ ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ АТЕРОСКЛЕРОЗА И ОСТЕОПОРОЗА: ЭЛАСТИЧНОСТЬ АРТЕРИАЛЬНОЙ СТЕНКИ И МИНЕРАЛЬНАЯ ПЛОТНОСТЬ КОСТИ В ЗАВИСИМОСТИ ОТ НЕКОТОРЫХ ПАРАМЕТРОВ РЕПЛИКАТИВНОГО КЛЕТОЧНОГО СТАРЕНИЯ. Кардиоваскулярная терапия и профилактика. 2014;13(5):83-93. https://doi.org/10.15829/1728-8800-2014-5-83-93

For citation:


Skripnikova I.A., Alikhanova N.A., Abirova E.S. COMMON PATHOGENETIC MECHANISMS OF ATHEROSCLEROSIS AND OSTEOPOROSIS: ELASTICITY OF ARTERIAL WALL AND MINERAL DENSITY OF THE BONE ACCORDING TO SOME PARAMETERS OF REPLICATION CELL AGEING. Cardiovascular Therapy and Prevention. 2014;13(5):83-93. (In Russ.) https://doi.org/10.15829/1728-8800-2014-5-83-93

Просмотров: 227


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)