Preview

Cardiovascular Therapy and Prevention

Advanced search

NUCLEAR IMAGING IN SUDDEN CARDIAC DEATH RISK ASSESSMENT

https://doi.org/10.15829/1728-8800-2018-2-68-74

Abstract

Sudden cardiac death is a cause of fatal outcomes in large proportion of cardiovascular patients. Left ventricle ejection fraction at the moment is the main criteria for sudden cardiac death risk stratification, however the parameter is not enough reliable. Nuclear imaging methods make it to visualize finer pathophysiological processes representing the probability of the life threatening ventricular arrhythmias development. The review is focused on recent data on nuclear imaging for cellular perfusion assessment, transient ischemia, vitality of myocardium and myocardial blood flow, metabolic disorders and sympathetic innervation.

About the Authors

A. A. Ansheles
Myasnikov Clinical Cardiology Institute of “National Medical Center of Cardiology” of the Ministry of Health; Cardiology Research Institute of Tomskiy National Research Medical Center of RAS
Russian Federation

Moscow



К. V. Zavadovsky
Cardiology Research Institute of Tomskiy National Research Medical Center of RAS


S. I. Sazonova
Cardiology Research Institute of Tomskiy National Research Medical Center of RAS


V. B. Sergienko
Myasnikov Clinical Cardiology Institute of “National Medical Center of Cardiology” of the Ministry of Health

Moscow



R. S. Karpov
Cardiology Research Institute of Tomskiy National Research Medical Center of RAS


References

1. Priori SG, Blomstrom­Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015; 36 (41): 2793­867. DOI: 10.1093/eurheartj/ehv316.

2. Stecker EC, Vickers C, Waltz J, et al. Population­based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two­year findings from the Oregon Sudden Unexpected Death Study. JACC 2006; 47 (6): 1161­6. DOI: 10.1016/j.jacc.2005.11.045.

3. Myerburg RJ. Sudden cardiac death: epidemiology, causes, and mechanisms. Cardiology 1987; 74 Suppl 2: 2­9.

4. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res 2004; 95 (8): 754­63. DOI: 10.1161/01.RES.0000145047.14691.db.

5. Sergienko VB, Ansheles AA. Nuclear imaging with neurotropic radiopharmaceuticals. Scientific thought. Moscow: Infra­M. 2014. (In Russ.) ISBN: 978­5­16­009170­9.

6. Sergienko VB, Ansheles AA. Nuclear imaging in cardiology. In the book: Guide to Cardiology in 4 volumes. Edited by E. I. Chazov. Moscow, 2014: 571­612. (In Russ.) ISBN: 978­5­89816­131­6.

7. Zavadovsky KV, Pankova AN. Scintigraphic evaluation of right ventricular dysfunction in patients with pulmonary embolism. Medical imaging. 2009; 3: 24­30. (In Russ.)

8. Zavadovsky KV, Saushkin VV, Pankova AN, et al. Methodical features of the implementation, processing of results and interpretation of radionuclide equilibrium ventriculography. Radiology­practice. 2011; 6: 75­83. (In Russ.)

9. Lishmanov YuB, Krivonogov NG, Zavadovsky KV. Radionuclide diagnostics of pathology of the small circle of blood circulation. STT. Tomsk. 2007. (In Russ.) ISBN: 5­93629­287­8.

10. Harel F, Finnerty V, Gregoire J, et al. Gated blood­pool SPECT versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction. J Nucl Cardiol 2010. 17 (3): 427­34. DOI: 10.1007/s12350­0109195­5.

11. Zavadovsky KV, Saushkin VV, Khlynin MS, et al. Radionuclide Assessment of Cardiac Function and Dyssynchrony in Children with Idiopathic Ventricular Tachycardia. Pacing Clin Electrophysiol 2016; 39 (11): 1213­24. DOI: 10.1111/pace.12948.

12. Zavadovsky KV, Kovalev IA, Chernyshev AA, et al. Possibilities of radionuclide tomoventriculography in assessing mechanical myocardial dissynchrony and intracardiac hemodynamics in ventricular arrhythmias in children. Journal of arrhythmology 2010; 2: 37­42. (In Russ.)

13. Ansheles AA. Specific features of interpretation of myocardial perfusion singlephoton emission computed tomography with computed tomographic attenuation correction. Vestnik rentgenologii i radiologii 2014; 2: 5­20. (In Russ.)

14. Priori SG, Blomström­Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2015; 36 (41): 2793­867. DOI: 10.1093/eurheartj/ehv316.

15. Hachamovitch R, Rozanski A, Hayes S, et al. Predicting therapeutic benefit from myocardial revascularization procedures: Are measurements of both resting left ventricular ejection fraction and stress­induced myocardial ischemia necessary? Journal of Nuclear Cardiology 2006; 13 (6): 768­78. DOI: 10.1016/j.nuclcard.2006.08.017.

16. Harel F, Finnerty V, Grégoire J, et al. Gated blood­pool SPECT versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction. J Nucl Cardiol 2010; 17 (3): 427­34. DOI: 10.1007/s12350­0109195­5.

17. Ansheles AA, Sergienko VB. Diagnostic imaging modalities in myocardial perfusion assessment in patients with ischemic heart disease. Nuclear Medicine and radiation safety 2011; 3: 74­9. (In Russ.)

18. Sergienko VB, Ansheles AA. Molecular imaging in atherosclerosis and myocardial perfusion assessment. Kardiologicheskij Vestnik 2010; 2 (XVII): 76­82. (In Russ.)

19. Shvalev VN, Reutov VP, Sergienko VB, et al. Mechanisms of development of cardiovascular diseases in age­related disorders of the nervous system. Kazan medical journal 2016; 4: 598­606. (In Russ.) DOI: 10.17750/KMJ2016­598

20. Bello D, Fieno DS, Kim RJ, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. JACC 2005; 45 (7): 1104­8. DOI: 10.1016/j.jacc.2004.12.057.

21. Morishima I, Sone T, Tsuboi H, et al. Risk stratification of patients with prior myocardial infarction and advanced left ventricular dysfunction by gated myocardial perfusion SPECT imaging. J Nucl Cardiol 2008; 15 (5): 631­7. DOI: 10.1016/j.nuclcard.2008.03.009.

22. Sergienko VB, Ansheles AA. Tomographic methods in the assessment of myocardial perfusion. Vestnik rentgenologii i radiologii 2010; 3: 10­4. (In Russ.)

23. van der Burg A. Impact of Viability, Ischemia, Scar Tissue, and Revascularization on Outcome After Aborted Sudden Death. Circulation 2003; 108 (16): 1954­9. DOI: 10.1161/01.cir.0000091410.19963.9a.

24. Piccini JP, Starr AZ, Horton JR, et al. Single­Photon Emission Computed Tomography Myocardial Perfusion Imaging and the Risk of Sudden Cardiac Death in Patients With Coronary Disease and Left Ventricular Ejection Fraction >35%. JACC 2010; 56 (3): 206­14. DOI: 10.1016/j.jacc.2010.01.061.

25. Dorbala S, Di Carli MF, Beanlands RS, et al. Prognostic Value of Stress Myocardial Perfusion Positron Emission Tomography. JACC 2013; 61 (2): 176­84. DOI: 10.1016/j.jacc.2012.09.043.

26. Mochula AV, Zavadovsky KV, Lishmanov YuB. A technique for determining the reserve of myocardial blood flow using dynamic dynamic single­photon emission computed tomography. Bulletin of Experimental Biology and Medicine. 2015; 160 (12): 845­8. (In Russ.) DOI: 10.1007/s10517­016­3328­z.

27. Mochula AV, Zavadovsky KV, Andreev SL, et al. Dynamic single­photon emission computer tomography of the myocardium as a method of identification of multivessel coronary lesions. Vestnik rentgenologii i radiologii 2016; 97 (5): 289­95. (In Russ.) DOI: 10.20862/0042­4676­2016­97­5­289­295.

28. Rijnierse MT, de Haan S, Harms HJ, et al. Impaired Hyperemic Myocardial Blood Flow Is Associated With Inducibility of Ventricular Arrhythmia in Ischemic Cardiomyopathy. Circulation: Cardiovascular Imaging 2013; 7 (1): 20­30. DOI: 10.1161/circimaging.113.001158.

29. Ansheles AA, Shulgin DN, Solomyany VV, el al. Clinical significance of nuclear medicine in selection of CHD patients to coronary angiography. Terapevt 2012; 9: 34­41. (In Russ.)

30. Ansheles AA, Shulgin DN, Solomyany VV, et al. Comparison of stress­test, singlephoton emission computed tomography, and coronarography results in IHD patients. Kardiologicheskij Vestnik 2012; VII (2) (XIX): 10­6. (In Russ.)

31. Uebleis C, Hellweger S, Laubender RP, et al. The amount of dysfunctional but viable myocardium predicts long­term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging 2013; 29 (7): 1645­53. DOI: 10.1007/s10554­013­0254­2.

32. Ling LF, Marwick TH, Flores DR, et al. Identification of Therapeutic Benefit from Revascularization in Patients With Left Ventricular Systolic Dysfunction: Inducible Ischemia Versus Hibernating Myocardium. Circulation: Cardiovascular Imaging 2013; 6 (3): 363­72. DOI: 10.1161/circimaging.112.000138.

33. Beanlands RSB, Nichol G, Huszti E, et al. F­18­Fluorodeoxyglucose Positron Emission Tomography Imaging­Assisted Management of Patients With Severe Left Ventricular Dysfunction and Suspected Coronary Disease. JACC 2007; 50 (20): 2002­12. DOI: 10.1016/j.jacc.2007.09.006.

34. Di Carli MF, Maddahi J, Rokhsar S, et al. Long­term survival of patients with coronary artery disease and left ventricular dysfunction: Implications for the role of myocardial viability assessment in management decisions. The Journal of Thoracic and Cardiovascular Surgery 1998; 116 (6): 997­1004. DOI: 10.1016/s00225223(98)70052­2.

35. Ansheles AA, Mironov SP, Shulgin DN, et al. Myocardial perfusion SPECT with CT­based attenuation correction: data acquisition and interpretation (guidelines). Luchevaya diagnostika i terapiya 2016; 3 (7): 87­101. (In Russ.) DOI:10.22328/2079­5343­2016­3­87­101

36. Mielniczuk LM, Beanlands RS. Imaging­Guided Selection of Patients With Ischemic Heart Failure for High­Risk Revascularization Improves Identification of Those With the Highest Clinical Benefit. Circulation: Cardiovascular Imaging 2012; 5 (2): 262­70. DOI: 10.1161/circimaging.111.964668.

37. Lishmanov YuB, Minin SM, Efimova IYu, et al. Myocardial scintigraphy with 123I­methaiodobenzylguanidine in assessing the sympathetic innervation of the left ventricular myocardium in patients with ischemic heart disease with atrial fibrillation. Bulletin of Siberian Medicine 2014; 1: 103­9. (In Russ.)

38. Ansheles AA, Sergienko VB. Standardization of 123I­metaiodobenzylguanidine cardiac neurotropic scintigraphy and single­photon emission tomography. Vestnik rentgenologii i radiologii 2016; 97 (3): 173­80. (In Russ.) DOI: 10.20862/00424676­2016­97­3­173­180

39. Ansheles AA, Schigoleva YV, Sergienko IV, et al. SPECT myocardial perfusion and sympathetic innervation in patients with hypertrophic cardiomyopathy. Kardiologicheskij Vestnik 2016; XI (1): 24­33. (In Russ.)

40. Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine­123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal­averaged electrocardiogram, heart rate variability, and QT dispersion. JACC 2009; 53 (5): 426­35. DOI: 10.1016/j.jacc.2008.10.025.

41. Brunner­La Rocca H. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J 2001; 22 (13): 1136­43. DOI: 10.1053/euhj.2000.2407.

42. Bax JJ, Kraft O, Buxton AE, et al. 123I­mIBG Scintigraphy to Predict Inducibility of Ventricular Arrhythmias on Cardiac Electrophysiology Testing: A Prospective Multicenter Pilot Study. Circulation: Cardiovascular Imaging 2008; 1 (2): 131­40. DOI: 10.1161/CIRCIMAGING.108.782433.

43. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine­123 metaiodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE­HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. JACC 2010; 55 (20): 2212­21. DOI: 10.1016/j.jacc.2010.01.014.

44. Verberne HJ, Brewster LM, Somsen GA, et al. Prognostic value of myocardial 123I­metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 2008; 29 (9): 1147­59. DOI: 10.1093/eurheartj/ehn113.

45. Narula J, Gerson M, Thomas GS, et al. 123I­MIBG Imaging for Prediction of Mortality and Potentially Fatal Events in Heart Failure: The ADMIRE­HFX Study. J Nucl Med 2015; 56 (7): 1011­8. DOI: 10.2967/jnumed.115.156406.

46. Boogers MJ, Borleffs CJW, Henneman MM, et al. Cardiac Sympathetic Denervation Assessed With 123­Iodine Metaiodobenzylguanidine Imaging Predicts Ventricular Arrhythmias in Implantable Cardioverter­Defibrillator Patients. JACC 2010; 55 (24): 2769­77. DOI: 10.1016/j.jacc.2009.12.066.

47. Kawai T, Yamada T, Tamaki S, et al. Usefulness of Cardiac Meta­Iodobenzylguanidine Imaging to Identify Patients With Chronic Heart Failure and Left Ventricular Ejection Fraction <35% at Low Risk for Sudden Cardiac Death. Am J Cardiol 2015; 115 (11): 1549­54. DOI: 10.1016/j.amjcard.2015.02.058.

48. Shah AM, Bourgoun M, Narula J, et al. Influence of Ejection Fraction on the Prognostic Value of Sympathetic Innervation Imaging With Iodine­123 MIBG in Heart Failure. JACC: Cardiovascular Imaging 2012; 5 (11): 1139­46. DOI: 10.1016/j.jcmg.2012.02.019.

49. Fallavollita JA, Heavey BM, Luisi AJ, et al. Regional Myocardial Sympathetic Denervation Predicts the Risk of Sudden Cardiac Arrest in Ischemic Cardiomyopathy. JACC 2014; 63 (2): 141­9. DOI: 10.1016/j.jacc.2013.07.096.


Review

For citations:


Ansheles A.A., Zavadovsky К.V., Sazonova S.I., Sergienko V.B., Karpov R.S. NUCLEAR IMAGING IN SUDDEN CARDIAC DEATH RISK ASSESSMENT. Cardiovascular Therapy and Prevention. 2018;17(2):68-74. (In Russ.) https://doi.org/10.15829/1728-8800-2018-2-68-74

Views: 1032


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)