Васкулярные ростовые факторы в патогенезе гипертензивных состояний
Аннотация
Обобщение и анализ информации о роли нейротрофических и ростовых факторов в формировании сосудистой патологии, артериальной гипертонии (АГ) и органных поражений (ОП) позволяет определить новые позиции терапевтической стратегии. Становится все более очевидным, что помимо систем пептидных регуляторов (ангиотензин II, эндотелин-1, атриальные натрийуретические факторы), катехоламинов и др. в патогенезе кардиоваскулярных расстройств принимают участие полипептидные ростовые и нейротрофические факторы, встроенные в общую систему химической регуляции. Они выполняют функцию регуляторов нормальных и дисбалансированных процессов и непосредственно причастны к триаде «окислительные стресс – воспаление – эндотелиальная дисфункция», служащей основой развития АГ и ОП. Среди этих факторов первостепенный интерес представляют: Эндотелиальный фактор роста сосудов, Инсулиноподобные факторы роста, Тромбоцитарный ростовой фактор, Трансформирующие ростовые факторы, Фактор роста фибробластов, Фактор некроза опухоли. Структурные и функциональные особенности этих соединений и их значимость в качестве возможных посредников и/или предикторов и мишеней патологических процессов в сосудистой стенке представлены в настоящей статье.
Об авторе
О. А. ГомазковРоссия
Тел.: (095) 247-30-29
Список литературы
1. Ланкин В.З., Тихадзе А.К., Беленков Ю.Н. Свободнорадикальные процессы при заболеваниях сердечно-сосудистой системы. Кардиология 2000; 40(7): 48-61.
2. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 2004; 44(3): 248-52.
3. Гомазков О.А. Молекулярные и физиологические аспекты эндотелиальной функции. Роль эндогенных химических регуляторов. Успехи физиол наук 2000;31(4):48-62.
4. Задионченко В.С., Адашева Т.В., Сандомирская А.П., Суворова С.С. Дисфункция эндотелия, артериальная гипертония: терапевтические возможности. Кардиоваскулярная терапия и профилактика 2002;1(2):79-90.
5. Небиеридзе Д.В., Оганов Р.Г. Дисфункция эндотелия как фактор риска атеросклероза, клиническое значение ее коррекции. Кардиоваск тер профил 2003; 2(4): 68-86.
6. Курбанов Р.Д., Елисеева М.Р., Турсунов Р.Р. и др. Гуморальные маркеры дисфункции эндотелия при эссенциальной гипертонии. Кардиология 2003; 43(7): 61-4.
7. Suzuki Y, Ruiz-Ortega M, Lorenzo O,et al. Inflammation and angiotensin II. Int J Biochem Cell Biol 2003; 35(6): 881-900.
8. El Bekay R, Alvarez M, Monteseirin J, et al. Oxidative stress is critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB. Blood 2003; 102(2): 662-71.
9. Constanzo A, Moretti F, Burgio VL, et al. Endothelial activation of angiotensin II trougth NFkappaB and p38 pathways: Involvement of NFkappaB-inducible kinase, free oxygen radicals, and selective inhibition by aspirin. J Cell Physiol 2003; 195(3): 402-10.
10. Cominacini L, Pasini A, Garbin U, et al. Zofenopril inhibits the expression of adhesion molecules on endothelial cells by reducing reactive oxygen species. Am J Hypertens 2002; 15(10 Pt 1): 891-5.
11. Phillips MI, Kimura B. Antisense therapeutics for hypertension: targeting the Renin-Angiotensin system. Methods Mol Med 2004; 106: 51-68.
12. Virdis A, Schiffrin EL. Vascular inflammation: a role in vascular disease in hypertension? Curr Opin Nephrol Hypertens 2003; 12(2): 181-7.
13. De Gennaro Colonna V, Rossoni G, Rigamonti A, et al. Enalapril and quinapril improve endothelial vasodilator function and aortic eNOS gene expression in L-NAME-treated rats. Eur J Pharmacol 2002; 450(1): 61-6.
14. Hatta T, Nakata T, Harada S, et al. Lowering of blood pressure improves endothelial dysfunction by increase of NO production in hypertensive rats. Hypert Res 2002; 25(3): 455-60.
15. Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Г. Эндотелиальная дисфункция при сердечной недостаточности: возможности терапи ингибиторами АПФ. Кардиология 2001; 41(5):100-4.
16. Мордовин В.Ф., Рипп Т.М., Соколов А.А. и др. Динамике показателей эндотелийзависимой вазодилатации и гипотензивная эффективность эналаприла у пациентов с артериальной гипертонией. Кардиология 2001; 41(6): 31-4.
17. Зотова И.В., Затейщиков Д.А., Сидоренко Б.А. Синтез оксида азота и развитие атеросклероза. Кардиология 2002; 42(4): 58-67.
18. Levi-Montalcini R. The nerve growth factor: thirty-five years later. EMBO J 1987; 6: 1145-54.
19. Calza L, Giardino L, Giuliani A, et al. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Nat Acad Sci USA 2001; 98(7): 4160-5.
20. Гомазков О.А. “Нейротрофические факторы мозга. Справочно-информационное издание”. Электронная версия CD-Rom. Mосква 2004.
21. Zhang ZG, Chopp M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106(7): 829-38.
22. Hai J, Li ST, Lin Q, et al. Vascular endothelial growth factor expression and angiogenesis induced by chronic cerebral hypoperfusion in rat brain. Neurosurgery 2003; 53(4): 963-70.
23. Zhao Q, Ishibashi M, Hiasa K, et al. Essential Role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension 2004; 44(3): 264-70.
24. Benndorf R, Boger RH, Ergun S, et al. Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ Res 2003; 93(5): 438-47.
25. Felmeden DC, Spencer CG, Belgore FM, et al. Endothelial damage and angiogenesis in hypertensive patients: relationship to cardiovascular risk factors and risk factor management. Am J Hypertens 2003; 16(1): 11-20.
26. Nadar SK, Blann AD, Lip GY. Plasma and platelet-derived vascular endothelial growth factor and angiopoietin-1 in hypertension: effects of antihypertensive therapy. J Intern Med 2004; 256(4): 331-7.
27. Chen J, Wen A, Hong D. [Changes and significance of concentrations of serum vascular endothelial growth factor in patients with pregnancy induced hypertension]. Zhonghua Fu Chan Ke Za Zhi 2000; 35(2): 72-4.
28. Nimi H, Arimura K, Jonosono M, et al. VEGF is causative for pulmonary hypertension in patient with Crow-Fukase (POEMS) syndrome. Intern Med 2000; 39(12): 1101-4.
29. Eddahibi S, Humbert M, Sediame S, et al. Imbalance between platelet vascular endothelial growth factor and platelet-derived growth factor in pulmonary hypertension. Effect of prostacyclin therapy. Am J Respir Crit Care Med 2000; 162(4 Pt 1): 1493-9.
30. Yang R, Ogasawara AK, Zioncheck TF, et al. Exaggerated hypotensive effect of vascular endothelial growth factor in spontaneously hypertensive rats. Hypertension 2002; 39(3): 815-20.
31. Quinn TP, Schlueter M, Soifer SJ, Gutierrez JA. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2002; 282 (5): L897-903.
32. Partovian C, Adnot S, Eddahibi S, et al. Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension. Am J Physiol 1998; 275(6 Pt 2): H1948-56.
33. Campbell AI, Zhao Y, Sandhu R, Stewart DJ. Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation 2001; 104(18): 2242-8.
34. Li QF, Dai AG. Hypoxia-inducible factor-1 alpha regulates the role of vascular endothelial growth factor on pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Chin Med J (Engl) 2004; 117(7): 1023-8.
35. Wanstall JC, Gambino A, Jeffery TK, et al. Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovasc Res 2002; 55(2): 361-8.
36. Louzier V, Raffestin B, Leroux A, et al. Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2003; 284(6): L926-37.
37. Taraseviciene-Stewart L, Kasahara Y, Alger L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 2001; 15(2): 427-38.
38. Fujita M, Mason RJ, Cool C, et al. Pulmonary hypertension in TNF-alpha-overexpressing mice is associated with decreased VEGF gene expression. J Appl Physiol 2002; 93(6): 2162-70.
39. Galderisi M, Vitale G, Lupoli G, et al. Inverse association between free insulin-like growth factor-1 and isovolumic relaxation in arterial systemic hypertension. Hypertens 2001; 38(4): 840-5.
40. Galderisi M, Caso P, Cicala S, et al. Positive association between circulating free insulin-like growth factor-1 levels and coronary flow reserve in arterial systemic hypertension. Am J Hypertens 2002; 15 (9): 766-72.
41. Watanabe T, Itokawa M, Nakagawa Y, et al. Increased levels of insulin-like growth factor binding protein-3 in hypertensive patients with carotid atherosclerosis. Am J Hypertens 2003; 16(9 Pt1): 754-60.
42. Schut AF, Janssen JA, Deinum J, et al. Polymorphism in the promoter region of the insulin-like growth factor I gene is related to carotid intima-media thickness and aortic pulse wave velocity in subjects with hypertension. Stroke 2003; 34(7): 1623-7.
43. Heald AH, Siddals KW, Fraser W, et al. Low circulating levels of insulin-like growth factor binding protein-1 (IGFBP-1) are closely associated with the presence of macrovascular disease and hypertension in type 2 diabetes. Diabetes 2002; 51(8): 2629-36.
44. Huang CY, Buchanan DL, Gordon RL. Jr, Sherman M.J. et al. Increased insulin-like growth factor-I gene expression precedes left ventricular cardiomyocyte hypertrophy in a rapidlyhypertrophying rat model system. Cell Biochem Funct 2003; 21(4): 355-61.
45. Anwar A, Zahid AA, Phillips L, Delafontaine P. Insulin-like growth factor binding protein-4 expression is decreased by angiotensin II and thrombin in rat aortic vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000; 20(2): 370-6.
46. Kamide K, Hori MT, Zhu JH, et al. Insulin and insulin-like growth factor-I promotes angiotensinogen production and growth in vascular smooth muscle cells. J Hypertens 2000; 18(8): 1051-6.
47. Muller C, Reddert A, Wassmann S, et al. Insulin-like growth factor induces up-regulation of AT(1)-receptor gene expression in vascular smooth muscle cells. J Renin Angiotensin Aldosterone Syst 2000; 1(3): 273-7.
48. Nishishita T, Lin PC. Angiopoietin 1, PDGF-B, and TGF-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem 2004; 91(3): 584-93.
49. Englesbe MJ, Hawkins SM, Hsieh PC, et al. Concomitant blockade of platelet-derived growth factor receptors alpha and beta induces intimal atrophy in baboon PTFE grafts. J Vasc Surg 2004; 39(2): 440-6.
50. Sack FU, Vielfort TJ, Koch A, et al. The role of platelet derived growth factor in endomyocardial biopsies shortly after heart transplantation in relation to postoperative course. Eur J Cardiothorac Surg 2004; 25(1): 91-7.
51. Tanabe Y, Saito M, Ueno A, et al. Mechanical stretch augments PDGF receptor beta expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells. Mol Cell Biochem 2000; 215(1-2): 103-13.
52. Kim S, Zhan Y, Izumi Y, et al. In vivo activation of rat aortic platelet-derived growth factor and epidermal growth factor receptors by angiotensin II and hypertension. Arterioscler Thromb Vasc Biol 2000; 20(12): 2539-45.
53. Kishioka H, Fukuda N, Wen-Yang H, et al. Effects of PDGF Achain antisense oligodeoxynucleotides on growth of cardiovascular organs in stroke-prone spontaneously hypertensive rats. Am J Hypertens 2001; 14(5 Pt 1): 439-45.
54. Miller-Kasprzak E, Niemir ZI, Czekalski S. The role of platelet-derived growth factor A (PDGF-A) in hypertension and renal diseases. Part 2: a role of PDGF-A in kidney diseases. Pol Merkuriusz Lek 2004; 16(94): 403-5.
55. Intiso D, Zarrelli MM, Lagioia G, et al. Tumor necrosis factor alpha serum levels and inflammatory response in acute ischemic stroke patients. Neurol Sci 2004; 24(6): 390-6.
56. Kadokami T. Antitumor necrosis factor-alpha antibody limits heart failure in a transgenic model. Circulation 2001; 104(10): 1094-7.
57. Sheu WHH, Lee WJ, Chang RL, Chen YT. Plasma tumor necrosis factor alpha levels and insulin sensitivity in hypertensive subjects. Clin Exper Hypert 2000; 22(6): 595-606.
58. Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens 2005; 19(2): 149-54.
59. Goumans MJ, Lebrin F, Valdimarsdottir G. Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 2003; 13(7): 301-7.
60. Lijnen PJ, Petrov VV, Fagard RH. Association between transforming growth factor-beta and hypertension. Am J Hypertens 2003; 16(7): 604-11.
61. Le Cras TD, Hardie WD, Fagan K, et al. Disrupted pulmonary vascular development and pulmonary hypertension in transgenic mice overexpressing transforming growth factor-alpha. Am J Physiol Lung Cell Mol Physiol 2003; 285(5): L1046-54.
62. Ying WZ, Sanders PW. The interrelationship between TGF-beta1 and nitric oxide is altered in salt-sensitive hypertension. Am J Physiol Renal Physiol 2003; 285(5): F902-8.
63. Tahira Y, Fukuda N, Endo M, et al. Transforming growth factorbeta expression in cardiovascular organs in stroke-prone spontaneously hypertensive rats with the development of hypertension. Hypertens Res 2002; 25(6): 911-8.
64. Srivastava S, Terjung RL, Yang HT. Basic fibroblast growth factor increases collateral blood flow in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2003; 285(3): H1190-7.
65. Benisty JI, McLaughlin VV, Landzberg MJ, et al. Elevated basic fibroblast growth factor levels in patients with pulmonary arterial hypertension. Chest 2004; 126(4): 1255-61.
66. Hohlagschwandtner M, Knofler M, Ploner M, et al. Basic fibroblast growth factor and hypertensive disorders in pregnancy. Hypertens Pregnancy 2002; 21(3): 235-41.
67. Biswas SS, Hughes GC, Scarborough JE, et al. Intramyocardial and intracoronary basic fibroblast growth factor in porcine hibernating myocardium: A comparative study. J Thorac Cardiovasc Surg 2004; 127(1): 34-43.
68. 68. Fu P, Sodian R, Luders C, et al. Effects of basic fibroblast growth factor and transforming growth factor-beta on maturation of human pediatric aortic cell culture for tissue engineering of cardiovascular structures. ASAIO J 2004; 50(1): 9-14.
69. Kanda S, Miyata Y., Kanetake H. Fibroblast growth factor-2- mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J Biol Chem 2004; 279(6): 4007- 16.
70. Mombouli JV, Vanhoutte PM. Endothelial dysfunction: From physiology to therapy. J Mol Cell Cardiol 1999; 31(1): 61-74.
71. Pahor M, Elam MB, Garrison RJ, et al. Emerging noninvasive biochemical measures to predict cardiovascular risk. Arch Intern Med 1999; 159(3): 237-45.
72. Sautiere K, Susen F, Cuillereta G. Hepatocyte Growth Factor and VEGF serum level: risk factors for clinical events at one year after PTCA. Europ Soc Cardiol Congres (Munich) 2004; poster 1343.
73. Iacobellis G, Cipriani R, Gabriele A, et al. High circulating vascular endothelial growth factor (VEGF) is related to a better systolic function in diabetic hypertensive patients. Cytokine 2004; 27(1): 25-30.
74. Witthaut W, Stövesandt X, Prondzinsky A, et al. Elevated TNF-alpha in acute myocardial infarction following primary angioplasty is associated with poor prognosis. J Hypert 2003; 21(Suppl 4): 913.
Рецензия
Для цитирования:
Гомазков О.А. Васкулярные ростовые факторы в патогенезе гипертензивных состояний. Кардиоваскулярная терапия и профилактика. 2005;4(3, ч.I):93-103.
For citation:
Gomazkov O.A. Vascular growth factors in hypertensive state pathogenesis. Cardiovascular Therapy and Prevention. 2005;4(3, ч.I):93-103. (In Russ.)