Preview

Cardiovascular Therapy and Prevention

Advanced search

Pharmaceutical regulation of cardiomyocyte energetic substrate metabolism in ischemia8associated pathology

Abstract

The authors analyze the results of principal studies focused on cardiomyocyte (CMC) energy metabolism in normal physiological state and ischemia. Special emphasis is put on mechanisms of regulation and interaction of main energetic substrate oxidation processes, as well as on chemical substances and pharmaceutical agents affecting key stages of energetic metabolism in ischemia. Medications that partially reduce fatty acid (FA) oxidation in ischemic myocardium, demonstrate cytoprotective action. Their clinical safety is explained by preventing CMC accumulation and toxicity prevention of FT and their products.

About the Authors

E. I. Astashkin
I.M. Sechenov Moscow Medical Academy. Moscow
Russian Federation


M. G. Glezer
I.M. Sechenov Moscow Medical Academy. Moscow
Russian Federation


References

1. Lopaschuk G.D. Pharmacologic rationale for trimetazidine in the treatment of ischemic heart disease. Am J Cardiovasc Drugs 2003; 3(Suppl.l): 21-6.

2. Grynberg A. Effectors of fatty acid oxidation reduction: promising new anti-ischaemic agents Curr Pharmaceutical Design 2005; 11(4): 489-509.

3. Opie L.H. The heart: physiology, from cell to circulation. Philadelphia: Lippincott-Raven 1998.

4. Opie L.H., King L.M. Glucose and glycogen utilization in myocardial ischemia: changes in metabolism and consequences for myocyte. Mol Cell Biochem 1998; 180: 3-26.

5. Opie L.H., Lopaschuk G.D. Fuels, aerobic and anaerobic metabolism In: Opie L.H., editor. Heart physiology, from cell to circulation. 4th ed. Philadelphia: Lippincott, Williams, Wilkins 2004; 306-54.

6. Bell G.I., Kayano T., Buse G.B., et al. Molecular biology of mammalian glucose transporters Diabetes Care 1990; 13: 198-208.

7. Stanley W.C. Partial fatty acid oxidation inhibitors for stable angina Expert Opin Investig Drugs 2002; 11(5): 615-29.

8. Lopaschuk G. Regulation of carbohydrate metabolism in ischemia and reperfusion Am Heart J 2000; 139: SI 15-9.

9. Stanly W.C. Diabetes and ishaemic heart disease: essential role for metabolic therapies. Coronary Artery 2005; 16(Suppl.l): Sl-12.

10. Stanley W.C., Marzilli M. Metabolic therapy in the treatment of ischaemic heart disease: the pharmacology of trimetazidine. Fund Clin Pharmac 2003; 17(2): 133-45.

11. Lopaschuk G.D., Barr R., Thomas P.D., Dyck J.R. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzime a thiolase. Circ Res 2003; 93: e33-7.

12. Stremmel W., Pohl L., Ring A., Herrmann T. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 2001; 36: 981-9.

13. Kantor P.F., Lucien A., Kozak R., Lopaschuk G.D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 2000; 86: 580-8.

14. Randle P.J., Newsholme E.A., Garland P.B. Regulation of glucose uptake by muscle. Effects of fatty acids, ketone bodies and pyruvate and alloxan diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J 1964; 93: 652-65.

15. Essop M.F., Opie L.H. Metabolic therapy for heart failure. Eur Heart J 2004; 25: 1765-8.

16. Benzi R.H., Lerrch R. Dissociation between contractile function and oxidative metabolism in postischemic myocardium: attenuation by ruthenium red administered during reperfusion. Circ Res 1992;71: 567-76.

17. Wojtezak L., Schonfeld P. Effect of fatty acid on energy coupling process in mitochondria. Biochim BiophysActa 1993; 1183: 41-57.

18. Lee L., Horowitz J., Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004; 25: 634-41.

19. Marzilli M. Cardioprotective effects of trimetazidine: a review. Curr Med Res Opin 2003; 19(7): 661-72.

20. Rupp H., Zarain-Herzberg A., Maisch B. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz 2002; 27: 621-36.

21. Глезер М.Г., Асташкин Е.И. Предуктал -новое направление в цитопротекции миокарда. Клин геронт 1998; 1: 1-9.

22. Dyck J.R.B., Cheng J.F., Stanley W.C., et al. Malonyl coenzyme A decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res 2004; 94: e78-84.

23. Simkhovich B.Z., Meirena D.V., Khagi Kh.B., et al. Effect of new structural analog of gamma-butyrobetaine-3-(2,2,2-trimethylhydrazine)propionate (THP) on carnitine level, carnitine-dependent fatty acid oxidation and various indices of energy metabolism in the myocardium. Vopr Med Khim 1986; 32:72-6.

24. Simkhovich B.Z., Shutenko Z.V., Meirena D.V., et al. g-3-(2,2,2-trimethylhydrazine) propionate (THP) -a novel gamma-butyrobetaine hydroxylase inhibitor with cardioprotective properties. Biochem Pharmacol 1988; 37: 195-202.

25. Kirimoto T., Nobori K., Asaka N., et al. Beneficial effect of MET-88, a gamma-butyrobetaine hydroxylase inhibitor, on energy metabolism in ischaemic dog hearts. Arch Int Pharmacodyn Ther 1996; 331: 163-78.

26. Hayashi Y., Kirimoto T., Asaka N., et al. Beneficial effect of MET-88, a gamma-butyrobetaine hydroxylase inhibitor in rats with heart failure following myocardial infarction. Eur J Pharmacol 2000; 395: 217-24.

27. Hayashi Y., Ishida H., Hoshiai M. MET-88, a gamma-butirobe-tain hydroxylase inhibitor, improves cardiac SR Ca2+ uptake activity in rats with congestive heart failure following myocardial infarction. Мое Cell Biochem 2000; 209: 39-46.

28. Calvani M., Reda E., Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 2000;95:75-83.

29. Fantini E., Demaison L., Sentex E., et al. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. J Mol Cell Cardiol 1994;26:949-58.

30. Renaud J.F. Internal pH, Na+, and Ca2+ regulation by trimetazidine during cardiac cell acidosis. Cardiovasc Drugs Ther 1988; 1(6): 677-86.

31. El Bannani H., Bernard M., Baertz D. Changes in intracellular sodium and pH during ischemia-reperfusion are attenuated by trimetazidine: comparison between low-and zero-flow ischemia. Cardiovasc Res 2000; 47: 688-96.

32. Sentex E., Sergiel J.P., Lucien A., Grynberg A. Trimetazidine increases phospholipid turnover in ventricular myocyte. Mol Cell Biochem 1997; 175:153-62.

33. Tabbi-Annenl I., Lucien A., Grynberg A. Trimetazidine effect on phospholipid synthesis in ventricular myocytes: consequences in a-adrenergic signaling. Fundam Clin Pharmacol 2003; 17: 51-9.

34. Tabbi-Anneni I., Helies-Toussaint C., Morin D., et al. Prevention of heart failure in rats by trimetazidine treatment: a consequence of accelerated phospholipid turnover? J Pharmacol Exp Ther 2003; 304: 1003-9.

35. Калвинып И.Я. Милдронат -механизм действия и перспективы его применения. Москва Grindex 2001; 25 с.

36. Spaniol M., Brooks H., Auer L., et al. Development and characterization of an animal model of carnitine deficiency. Eur J Biochem 2001; 268: 1876-87.

37. Spaniol M., Kaufmann P., Beier K., et al. Mechanisms of liver steatosis in rats with systemic carnitine deficiency due to treatment with trimethylhydraziniumpropionate. J Lipid Research 2003; 44: 144-53.

38. D'hahan N. Trimetazidine: potential mechanisms of action in hypertrophic cardiomyopathy. J Cardiovasc Pharmac 1999; 35: 500-6.


Review

For citations:


Astashkin E.I., Glezer M.G. Pharmaceutical regulation of cardiomyocyte energetic substrate metabolism in ischemia8associated pathology. Cardiovascular Therapy and Prevention. 2006;5(7):112-123. (In Russ.)

Views: 606


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)