Preview

Cardiovascular Therapy and Prevention

Advanced search

Trimetazidine effects on red blood cell membrane lipids and necrosis area size in thrombolytic therapy of myocardial infarction

Abstract

Aim. То assess the effects of an anti-ischemic medication trimetazidine on necrosis area size, lipid peroxidation (LPO) and membrane phosphohpids in thrombolytic therapy (ТLТ) of acute myocardial infarction (AMI).

Material and methods. The study included 79 AMI patients. Coronary artery recanalisation was achieved by intravenous bolus administration of streptase (750 000 Units). All patients received anticoagulants, disaggregants, beta-adrenoblockers, nitrates, and ACE inhibitors, according to the relevant indications and contraindications. The control group (CG) included 39 patients. Before TLT the main group (MG; n=40) was administered trimetazidine 40 mg/kg per os, followed by the dose of 60 mg/day. Myocardial ischemia severity was assessed by QRS-index and total creatine phosphokinase activity (CK) in plasma. LPO activity was assessed by serum levels of malonic dialdehyde (MDA). PhosphoUpid (PHL) profile of ted blood cell membranes was measured by thin layer chromatography method.

Results. Trimetazidine administration (60 pg/day per os) in reperfusion period was associated with significant decrease in anginal attack number, daily nitrate dose, reperfusion myocardial damage severity, and serum MDA concentration, comparing to the controls. In red blood cell membranes, concentrations of phosphatidyl chohne, phosphatidyl serine and sphingomyelin were significantly higher in the MG than in the CG, which points to trimetazidine impact on these metabolites in myocardial reperfusion. Simultaneous reduction in phosphatidyl ethanolamine level could be due to its involvement in phosphatidyl choline and phosphatidyl serine synthesis, stimulated by trimetazidine.

Conclusion. Trimetazidine therapy in AMI patients increased TLT effectiveness, due to reduced LPO and cell membrane PL normalization, improved myocardiocyte viability and beneficial effects on post-MI myocardial remodeling.

About the Authors

T. Yu. Rebrova
Research Institute of Cardiology, Tomsk Scientific Centre, Siberian Branch, Russian Academy of Medical Sciences
Russian Federation


S. A. Afanasyev
Research Institute of Cardiology, Tomsk Scientific Centre, Siberian Branch, Russian Academy of Medical Sciences
Russian Federation


V. A. Perchatkin
Research Institute of Cardiology, Tomsk Scientific Centre, Siberian Branch, Russian Academy of Medical Sciences
Russian Federation


I. V. Maksimov
Research Institute of Cardiology, Tomsk Scientific Centre, Siberian Branch, Russian Academy of Medical Sciences
Russian Federation


V. A. Markov
Research Institute of Cardiology, Tomsk Scientific Centre, Siberian Branch, Russian Academy of Medical Sciences
Russian Federation


References

1. Биленко М.В. Ишемические и реперфузионные повреждения органов. М: Медицина 1989.

2. Литвицкий П.Ф. Патогенные и адаптивные изменения в сердце при его регионарной ишемии и последующем возобновлении коронарного кровотока. Пат физ экспер тер 2002; 2: 2—12.

3. Ланкин В.З., Тихазе А.К., Беленков Ю.Н. Свободно-радикальные процессы при заболеваниях сердечно-сосудистой системы Кардиология 2000; 7: 48—61.

4. Гринберг А Роль липидов в метаболизме сердечной мышцы Медикография 1999; 21(2): 29-38.

5. Mody FV, Schelbert Н, Coyle К, et al. Mechanism of a novel metabolicaly active antianginal agent (trimetazidine) delin-eated by PET. JACC 1996; 27: (Suppl A): 132A.

6. Kantor PF, Lucien A, Kozak R, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circulation Res 2000; 86: 580—8.

7. Effect of 48-h intravenous trimetazidine on short- and long-term outcomes of patients with acute myocardial infarction, with and without thrombolytic therapy; A double-blind, placebo-controlled, randomized trial. The EMIP-FR Group. European Myocardial Infarction Project— Free Radicals. Eur Heart J 2000; 21: 1537-46.

8. Wagner G, Freye C, Palmery S, et al. The evaluation of a QRS scoring system for estimating myocardial infarct size. I. Specificity and observer agreement. Circulation 1982; 65: 342-7.

9. Коробейникова Э.Н. Модификация определения продуктов перекисного окисления липидов в реакции с тиобарбитуровой кислотой. Набор дело 1989; 7: 8—10.

10. Чернов Ю.Н., Васин М.В., Батищева Г.А Патологические изменения клеточных мембран при ишемической болезни сердца и возможные пути фармакологической коррекции. Эксперклинфармакол 1992; 57(4): 67-72.

11. Фатенков В.Н., Зарубина Е.Г., Миляков М.Н. Нарушения в структуре мембран эритроцитов у больных инфарктом миокарда. Кардиология 2002; 6: 54—9.

12. Хиггинс Д.А. Разделение и анализ липидных компонентов мембран. В: Финдлей Дж., Эванз У. (ред.) Биологические мембраны. Москва “Мир” 1990; 150-95.

13. Камышников В.С. Справочник по клинико-биохимической лабораторной диагностике. Минск “Беларусь” 2000.

14. Руда М.Я. Тромболитики и восстановление коронарного кровотока при инфаркте миокарда. Кардиология 1997; 8: 57-67.

15. Detry L, Sellier Р, Pennaforte S, et al. Trimetazidine: a new concept in the treatment of angina. Comparison with propranolol in patients with stable angina. Trimetazidine European Multicenter Study Group. Br J Clin Pharmacol 1994; 37: 279-88.

16. Жарова E.A. Клиническая эффективность предуктала в моно- и комплексной терапии ишемической болезни сердца. Материалы Научного симпозиума “Миокардиальная цитопротекция: от концепции к практике” в рамках VI национального конгресса “Человек и лекарство”. Москва 1999; 3-4.

17. Соколова Р.И., Жданов В.С. Механизмы развития и проявления “гибернации” и “станнинга” миокарда. Кардиология 2005; 9: 73-8.

18. Ланкин В.З., Тихазе А.К., Жарова Е.А. и др. Исследование антиоксидантных свойств цитопротекторного препарата триметазидина. Кардиология 2001; 3: 21—8.

19. Fantini Е, Demaison L, Sentex Е, et al. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes dining hipoxia and reoxygenation. J Mol Cell Cardiol 1994; 26: 949-58.

20. Sentex E, Sergiel J, Lucien A, et. al.. Trimetazidine increases phospholipids turnover in ventricular myocyte. J Mol Cell Biochem 1997; 175: 153-62.

21. Duan JM, Karmazyn M. Protection of the reperfused ischemic isolated rat heart by phosphatidylcholine. J Cardiovasc Pharmacol 1990 Jan; 15(1): 163-71.

22. Уайт А., Хендлер Ф., Смит Э. и др. Основы биохимии. Москва “Мир” 1981.


Review

For citations:


Rebrova T.Yu., Afanasyev S.A., Perchatkin V.A., Maksimov I.V., Markov V.A. Trimetazidine effects on red blood cell membrane lipids and necrosis area size in thrombolytic therapy of myocardial infarction. Cardiovascular Therapy and Prevention. 2009;8(2):56-62. (In Russ.)

Views: 506


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)