Preview

Cardiovascular Therapy and Prevention

Advanced search

Algorithm for predicting cardiovascular events in low/moderate risk patients using traditional and new factors: data from 10-year follow-up study

https://doi.org/10.15829/1728-8800-2021-2799

Abstract

Aim. To create an advanced algorithm for predicting cardiovascular events (CVE) in low/moderate risk patients using a complex of traditional and new factors.

Material and methods. The study included 700 patients with Systematic Coronary Risk Evaluation (SCORE) <5%, examined in 20092010. In addition to standard investigations, blood biochemistry tests, including high-sensitivity C-reactive protein (hsCRP), and sphygmography were carried. In 2019, a follow-up phone call was made to participants to identify recent CVEs: cardiovascular death, myocardial infarction, unstable angina, stroke, revascularization. The response rate was 79,6% (n=557; men, 100; women, 457).

Results. CVEs were observed in 48 (8,6%) patients. The risk of CVEs increases systolic blood pressure (SBP) >130 mmHg (odds ratio (OR), 1,9 (95% confidence interval (CI), 1,0-3,6)), hsCRP >2,3 mg/L (OR, cardio-ankle vascular index (CAVI) >8,05 (OR, 1,25 (95% CI, 1,0-1,6)). In patients with a combination of ≥2 lipid profile abnormalities, SBP >130 mm Hg, hsCRP >2,3 mg/L and pulse wave velocity >13 m/s, the probability of developing CVEs (including cardiovascular death) increases 3,55 times (95% CI, 1,32-7,67).

Conclusion. Levels of pulse wave velocity, CAVI, urea and hsCRP should be considered as additional risk factors for CVE in patients with low/moderate risk, estimated using standard scales. Combinations of traditional and new risk factors demonstrate a cumulative effect.

About the Authors

M. D. Smirnova
National Medical Research Center of Cardiology
Russian Federation

Moscow



O. N. Svirida
National Medical Research Center of Cardiology
Russian Federation

Moscow



T. V. Fofanova
National Medical Research Center of Cardiology
Russian Federation

Moscow



Z. N. Blankova
National Medical Research Center of Cardiology
Russian Federation

Moscow



E. B. Yarovaya
Lomonosov Moscow State University
Russian Federation

Moscow



F. T. Ageev
National Medical Research Center of Cardiology
Russian Federation

Moscow



References

1. Cardiovascular prevention 2017. National guidelines. Russian Journal of Cardiology. 2018;(6):7-122. (In Russ.) doi:10.15829/1560-4071-2018-6-7-122.

2. Dossetor JB. Creatininemia versus uremia. The relative significance of blood urea nitrogen and serum creatinine concentrations in azotemia. Ann Intern Med. 1966;65:1287-99. doi:10.7326/0003-4819-65-6-1287.

3. Kazory A. Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. Am J Cardiol. 2010;106:694-700. doi:10.1016/j.amjcard.2010.04.024.

4. Ercin CN, Dogru T, Bagci S, et al. The relationship between blood urea nitrogen levels and metabolic, biochemical, and histopathologic findings of nondiabetic, nonhypertensive patients with nonalcoholic fatty liver disease. Turk J Med Sci. 2016;46(4):985-91. doi:10.3906/sag-1502-144.

5. Ostfeld R, Spinelli M, Mookherjee D, et al. The association of blood urea nitrogen levels and coronary artery disease. Einstein J Biol Med. 2016;25:3. doi:10.23861/EJBM20102573.

6. Kirtane AJ, Leder DM, Waikar SS. Serum blood urea nitrogen as an independent marker of subsequent mortality among patients with acute coronary syndromes and normal to mildly reduced glomerular filtration rates. J Am Coll Cardiol. 2005;45:1781-6. doi:10.1016/j.jacc.2005.02.068.

7. Xie Y, Bowe B, Li T. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 2018;93(3):741-52. doi:10.1016/j.kint.2017.08.033.

8. Pykhtina VS, Strazhesko ID, Boytsov SА, et al. The relationship of kidney function with arterial wall condition in individuals without chronic kidney disease and cardiovascular diseases. Klinicheskaya praktika. 2017;30(2):14-21. (In Russ.) doi:10.17816/clinpract8214-21.

9. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932-43. doi:10.1161/01.ATV.0000160548.78317.29.

10. Muller-Delp JM, Spier SA, Ramsey MW, et al. Aging impairs endothelium-dependent vasodilation in rat skeletal muscle arterioles. Am J Physiol Heart Circ Physiol. 2002;283:H1662-72. doi:10.1152/ajpheart.00004.2002.

11. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Pennells L, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310-20. doi:10.1056/NEJMoa11074777.

12. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:e50-103. doi:10.1016/j.jacc.2010.09.001.

13. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318-27. doi:10.1161/HYPERTENSIONAHA.112.194779.

14. Van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445-8. doi:10.1097/HJH.0b013e32834fa8b0.


Supplementary files

Review

For citations:


Smirnova M.D., Svirida O.N., Fofanova T.V., Blankova Z.N., Yarovaya E.B., Ageev F.T. Algorithm for predicting cardiovascular events in low/moderate risk patients using traditional and new factors: data from 10-year follow-up study. Cardiovascular Therapy and Prevention. 2021;20(6):2799. (In Russ.) https://doi.org/10.15829/1728-8800-2021-2799

Views: 1540


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)