Preview

Cardiovascular Therapy and Prevention

Advanced search

Potential of optical coherence tomography and intravascular ultrasound in the detection of vulnerable plaques in coronary arteries

https://doi.org/10.15829/1728-8800-2022-2909

Abstract

Intravascular imaging of vulnerable plaques in vivo has great potential for predicting coronary events. Currently, there are several methods of intravascular imaging, which make it possible to verify the components of the plaque and, accordingly, its vulnerability. The most common are virtual-histology intravascular ultrasound and optical coherence tomography. Several studies have shown that these imaging techniques can stratify the risk of adverse cardiovascular events, as well as assess the effectiveness of drug therapy. This article will describe the advantages and disadvantages of intravascular ultrasound and optical coherence tomography in identifying vulnerable coronary lesions.

About the Authors

N. A. Kochergin
Research Institute of Complex Issues of Cardiovascular Diseases
Russian Federation

Kemerovo



A. M. Kochergina
Research Institute of Complex Issues of Cardiovascular Diseases
Russian Federation

Kemerovo



References

1. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733-43. doi:10.1161/01.cir.79.4.733.

2. Johnson TW, Raber L, di Mario C, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2019;40:2566-84. doi: 10.1093/eurheartj/ehz332.

3. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478-92. doi:10.1016/s0735-1097(01)01175-5.

4. Nakano M, Yahagi K, Yamamoto H, et al. Additive Value of Integrated Backscatter IVUS for Detection of Vulnerable Plaque by Optical Frequency Domain Imaging: An Ex Vivo Autopsy Study of Human Coronary Arteries. JACC Cardiovasc Imaging. 2016;9:163-72. doi:10.1016/j.jcmg.2015.07.011.

5. Brown AJ, Obaid DR, Costopoulos C, et al. Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma. Circ Cardiovasc Imaging. 2015;8:e003487. doi:10.1161/CIRCIMAGING.115.003487.

6. Fujii K, Hao H, Shibuya M, et al. Accuracy of OCT, Grayscale IVUS, and Their Combination for the Diagnosis of Coronary TCFA: An Ex Vivo Validation Study. JACC Cardiovasc Imaging. 2015;8:451-60. doi:10.1016/j.jcmg.2014.10.015.

7. Stone GW, Maehara A, Lansky AJ, et al; PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226-35. doi:10.1056/NEJMoa1002358.

8. Calvert PA, Obaid DR, O’Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging. 2011;4:894-901. doi:10.1016/j.jcmg.2011.05.005.

9. Cheng JM, Garcia-Garcia HM, de Boer SP, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. 2014;35:639-47. doi:10.1093/eurheartj/eht484.

10. Stone GW, Maehara A, Ali ZA, et al., for the PROSPECT ABSORB Investigators. Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque. J Am Coll Cardiol. 2020;76(20):2289-301. doi:10.1016/j.jacc.2020.09.547.

11. Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590-7 doi:10.1016/j.jacc.2009.07078.

12. Kochergin NA, Kochergina AM, Khorlampenko AA, et al. Vulnerable atherosclerotic plaques of coronary arteries in patients with stable coronary artery disease: 12-months followup. Kardiologiia. 2020;60(2):1-6. (In Russ.) doi:10.18087/cardio.2020.2.n467

13. Nicholls SJ, Puri R, Anderson T, et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA. 2016;316:2373-84. doi:10.1001/jama.2016.16951.

14. Nicholls SJ, Puri R, Anderson T, et al. Effect of Evolocumab on Coronary Plaque Composition. J Am Coll Cardiol. 2018;72:2012-21. doi:10.1016/j.jacc.2018.06.078.

15. Räber L, Taniwaki M, Zaugg S, et al. IBIS 4 (Integrated Biomarkers and Imaging Study-4) Trial Investigators (NCT00962416). Effect of high-intensity statin therapy on atherosclerosis in noninfarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur Heart J. 2015;36:490-500. doi:10.1093/eurheartj/ehu373.

16. Räber L, Mintz GS, Koskinas KC, et al. ESC Scientific Document Group. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018;39:3281-300. doi:10.1093/eurheartj/ehy285.

17. 17 Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels. Atherosclerosis. 2015;242:490-5. doi:10.1016/j.atherosclerosis.2015.08.005.

18. Kitabata H, Tanaka A, Kubo T, et al. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease. Am J 31. Cardiol. 2010;105:1673-8. doi:10.1016/j.amjcard.2010.01.346.

19. Kitahara S, Kataoka Y, Otsuka F, et al. Plaque erosion or coronary artery embolism? Findings from clinical presentation, optical coherence tomographic and histopathological analysis in a case with acute coronary syndrome. Int J Cardiovasc Imaging. 2019;35:1791-2. doi:10.1007/s10554-019-01641-6.

20. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640-5. doi: 10.1161/01.cir.0000029927.92825.f6.

21. Xing L, Higuma T, Wang Z, et al. Clinical Significance of LipidRich Plaque Detected by Optical Coherence Tomography: A 4-Year Follow-Up Study. J Am Coll Cardiol. 2017;69:2502-13. doi:10.1016/j.jacc.2017.03.556.

22. Prati F, Romagnoli E, Gatto L, et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J. 2020;41:383-91. doi:10.1093/eurheartj/ehz520.

23. Kedhi E, Berta B, Roleder T, et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINE OCT-FFR trial. Eur Heart J. 2021 Dec 1;42(45):4671-4679. doi:10.1093/eurheartj/ehab433.

24. Tarkin JM, Dweck MR, Evans NR, et al. Imaging Atherosclerosis. Circ Res. 2016;118:750-69. doi: 10.1161/CIRCRESAHA.115.306247.

25. Sugane H, Kataoka Y, Otsuka F, Yasuda S. Cholesterol-crystalized coronary atheroma as a potential precursor lesion causing acute coronary syndrome: a case report. Eur Heart J Case Rep. 2019;3:ytz128. doi:10.1093/ehjcr/ytz128.

26. Kini AS, Vengrenyuk Y, Yoshimura T, et al. Fibrous Cap Thickness by Optical Coherence Tomography In Vivo. J Am Coll Cardiol. 2017;69:644-57 doi:10.1016/j.jacc.2016.10.028.

27. 27 Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748-58. doi:10.1016/j.jacc.2013.05.071.

28. Okamura T, Onuma Y, Garcia-Garcia HM, et al. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: A comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6:1037-45. doi:10.4244/EIJV6I9A182.

29. Kochergin NA, Kochergina AM, Ganjukov VI, Barbarash OL. Vulnerable atherosclerotic plaques of coronary arteries in patients with stable coronary artery disease. Complex Issues of Cardiovascular Diseases. 2018;7(3):65-71. (In Russ.) doi: 10.17802/2306-1278-2018-7-3-65-71.

30. Sawada T, Shite J, Garcia-Garcia HM, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008;29:1136-46. doi:10.1093/eurheartj/ehn132.


Supplementary files

Review

For citations:


Kochergin N.A., Kochergina A.M. Potential of optical coherence tomography and intravascular ultrasound in the detection of vulnerable plaques in coronary arteries. Cardiovascular Therapy and Prevention. 2022;21(1):2909. (In Russ.) https://doi.org/10.15829/1728-8800-2022-2909

Views: 648


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)