Preview

Cardiovascular Therapy and Prevention

Advanced search

Heart failure and osteoporosis: common pathogenetic components

https://doi.org/10.15829/1728-8800-2022-3233

Abstract

This literature review reflects modern ideas about the combination of heart failure (HF) and osteoporosis, common risk factors for these diseases, and pathophysiological mechanisms of metabolic bone diseases in HF. Despite a growing number of studies on the combined cardiovascular and skeletal system pathology, the relationship between a decrease in bone mineral density and HF risk remains poorly understood. Both conditions are common causes of disability, death, prolonged hospitalizations and a significant reduction in quality of life, while its combination exacerbates their course and increases the incidence of adverse outcomes, which is a heavy burden for a patient and health care in general. Keywords: heart failure, osteoporosis, bone mineral density, bone metabolism.

About the Authors

I. A. Skripnikova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



E. K. Yaralieva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342-56. doi:10.1002/ejhf.1858.

2. Orlova IA, Tkacheva ON, Arutyunov GP, et al. Features of diagnostics and treatment of chronic heart failure in elderly and senile patients. Expert opinion of the Society of Experts in Heart Failure, Russian Association of Gerontologists, and Euroasian Association of Therapists. Kardiologiia. 2018;58(12S):42-72. (In Russ.) doi:10.18087/cardio.2560.

3. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211-59. doi:10.1016/S01406736(17)32154-2.

4. Camacho PM, Petak SM, Binkley N, et al. American association of clinical endocrinologists/American college of endocrinology Clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis — 2020. Endocr Pract. 2020;26(Suppl 1):1-46. doi:10.4158/GL-2020-0524SUPPL.

5. Russian Society of Cardiology. Chronic heart failure. Clinical guidelines 2020. Russ J Cardiol. 2020;25(11):4083. (In Russ.) doi:10.15829/1560-4071-2020-4083.

6. Skripnikova IA, Kolchina MA, Kosmatova OV, et al. Assessment of subclinical manifestations of atherosclerosis of coronary and peripheral arteries and bone strength parameters in women. Rational Pharmacotherapy in Cardiology. 2020;16(5):868-75. (In Russ.) doi:10.20996/1819-64462020-11-02.

7. Dudinskaya EN, Tkacheva ON, Matchekhina LV, et al. The relationship of bone mineral density with the of the intimamedia thickness in premenopausal women. Osteoporosis and Bone Diseases. 2020;23(4):13-8. (In Russ.) doi:10.14341/osteo12698.

8. Notarnicola A, Maccagnano G, Moretti L, et al. Cardiopathy and osteoporosis: the epidemiology in a region of Italy. J Biol Regul Homeost Agents. 2017;31(1):251-5.

9. Xing W, Lv X, Gao W, et al. Bone mineral density in patients with chronic heart failure: a meta-analysis. Clin Interv Aging. 2018;13:343-53. doi:10.2147/CIA.S154356.

10. Majumdar SR, Ezekowitz JA, Lix LM, et al. Heart failure is a clinically and densitometrically independent risk factor for osteoporotic fractures: population-based cohort study of 45,509 subjects. J Clin Endocrinol Metab. 2012;97(4):1179-86. doi:10.1210/jc.2011-3055.

11. Ge G, Li J, Wang Q. Heart failure and fracture risk: a metaanalysis. Osteoporos Int. 2019;30(10):1903-9. doi:10.1007/s00198-019-05042-2.

12. Chizhov PA, Ivanova YI, Medvedeva TV, et al. Osteoporosis of the spine and chronic heart failure. Research J. 2016;10(52):1069. (In Russ.) doi:10.18454/IRJ.2016.52.059.

13. Larina VN, Raspopova TN. Bone metabolism and bone mineral density in chronic heart failure. Kardiologiia. 2016;56(7):39-46. (In Russ.) doi:10.18565/cardio.2016.7.39-46.

14. Larina VN, Bart BY, Karpenko DG, et al. Polymorbidity and its association with the unfavorable course of chronic heart failure in outpatients aged 60 years and older. Kardiologiia. 2019;59(12S):25-36. (In Russ.) doi:10.18087/cardio.n431.

15. van Diepen S, Majumdar SR, Bakal JA, et al. Heart failure is a risk factor for orthopedic fracture: a population-based analysis of 16,294 patients. Circulation. 2008;118(19):1946-52. doi:10.1161.108.784009.

16. Carbone L, Buzkova P, Fink HA, et al. Hip fractures and heart failure: findings from the Cardiovascular Health Study. Eur Heart J. 2010;31:77-84. doi:10.1093/eurheartj/ehp483.

17. Loncar G, Cvetinovic N, Lainscak M, et al. Bone in heart failure. J Cachexia Sarcopenia Muscle. 2020;11(2):381-93. doi:10.1002/jcsm.12516.

18. Reznik EV, Nikitin IG. Mineral and bone disorders in chronic heart failure. Kardiologiia. 2018;58(2S):42-62. (In Russ.) doi:10.18087/cardio.2429.

19. Saponaro F, Saba A, Frascarelli S, et al. Vitamin D measurement and effect on outcome in a cohort of patients with heart failure. Endocr Connect. 2018;7(9):957-64. doi:10.1530/EC-18-0207.

20. Yaralieva EK, Skripnikova IA, Shishkova VN, et al. Vitamin D and Chronic Heart Failure: Relationship and Intersection Points. Atmosfera. Novosti kardiologii. 2021;(1):54-9. (In Russ.)

21. Roffe-Vazquez DN, Huerta-Delgado AS, Castillo EC, et al. Correlation of vitamin D with inflammatory cytokines, atherosclerotic parameters, and lifestyle factors in the setting of heart failure: a 12-month follow-up study. Int J Mol Sci. 2019;20(22): 5811. doi:10.3390/ijms20225811.

22. Wu GY, Wu T, Xu BD, et al. Effect of parathyroid hormone on cardiac function in rats with cardiomyopathy. Exp Ther Med. 2018;16(4):2859-66. doi:10.3892/etm.2018.6528.

23. Voronenko IV, Syrkin AL, Rozhinskaya LY, et al. Hyperparatirosis and cardiovascular system pathology. Osteoporosis and Bone Diseases. 2006;9(2):33-41. (In Russ.) doi:10.14341/osteo2006233-41.

24. Loncar G, Bozic B, Cvetinovic N, et al. Secondary hyperparathyroidism prevalence and prognostic role in elderly males with heart failure. J Endocrinol Invest. 2017;40(3):297-304. doi:10.1007/s40618-016-0561-2.

25. Topolyanskaya SV. Interleukin 6 in aging and age-related diseases. The Clinician. 2020;14(3-4):10-7. (In Russ.) doi:10.17650/1818-8338-2020-14-3-4-К633.

26. Ershova OB, Belova KY, Novikova IV, et al. The role of cytokines in the development of cardiovascular diseases and osteoporosis. Osteoporosis and Bone Diseases. 2011;14(3):33-5. (In Russ.) Ершова О. Б., Белова К. Ю., Новикова И. В. и др. Роль цитокинов в развитии сердечно-сосудистых заболеваний и остеопороза. Остеопороз и остеопатии. 2011;14(3):33-5. doi:10.14341/osteo2011333-35.

27. Topolyanskaya SV. Tumor Necrosis Factor-Alpha and AgeRelated Pathologies. The Russian Archives of Internal Medicine. 2020;10(6):414-21. (In Russ.) doi:10.20514/2226-6704-2020-10-6-414-421.

28. Skripnikova IA, Ptichkina PA, Mitrohina TV, et al. Metabolic effects of menopause: the role of markers of fat metabolism in the development of osteoporosis. The Russian Journal of Preventive Medicine. 2011;2(14):11-6. (In Russ).

29. Nakamura Y, Nakano M, Suzuki T, et al. Two adipocytokines, leptin and adiponectin, independently predict osteoporotic fracture risk at different bone sites in postmenopausal women. Bone. 2020;(137):115404. doi:10.1016/j.bone.2020.115404.

30. Poetsch MS, Strano A, Guan K. Role of Leptin in Cardiovascular Diseases. Front Endocrinol. 2020;11:354. doi:10.3389/fendo.2020.00354.

31. Bozic B, Loncar G, Prodanovic N, et al. Relationship between high circulating adiponectin with bone mineral density and bone metabolism in elderly males with chronic heart failure. J Card Fail. 2010;16(4):301-7. doi:10.1016/j.cardfail.2009.12.015.

32. Tsutamoto T, Tanaka T, Sakai H, et al. Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur Heart J. 2007;28:1723-30. doi:10.1093/eurheartj/ehm154.

33. Topolyanskaya SV, Osipovskaya IA, Lifanova LS, et al. Bone Mineral Density and Metabolism in Very Elderly Patients with Congestive Heart Failure. SN Compr. Clin. Med. 2019;(1):451-7. doi:10.1007/s42399-019-00065-6.

34. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514-20. doi:10.1038/nature03398.

35. Ueland T, Yndestad A, Oie E, et al. Dysregulated osteoprotegerin/ RANK ligand/RANK axis in clinical and experimental heart failure. Circulation. 2005;111(9):2461-8. doi:10.1161/01.CIR.0000165119.62099.14.

36. Leistner DM, Seeger FH, Fischer A, et al. Elevated levels of the mediator of catabolic bone remodeling RANKL in the bone marrow environment link chronic heart failure with osteoporosis. Circ Heart Fail. 2012;5(6):769-77. doi:10.1161/CIRCHEARTFAILURE.111.966093.

37. Farhat GN, Cauley JA. The link between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab. 2008;5(1): 19-34.

38. Gaudio A, Xourafa A, Rapisarda R, et al. Peripheral artery disease and osteoporosis: Not only agerelated. Mol Med Rep. 2018;18(6):4787-92. doi:10.3892/mmr.2018.9512.

39. Katano S, Yano T, Tsukada T, et al. Clinical determinants and prognostic impact of osteoporosis in patients with chronic heart failure. Eur Heart J. 2020;41(2):3418. doi:10.1093/ehjci/ehaa946.3418.

40. Pfister R, Michels G, Sharp SJ, et al. Low bone mineral density predicts incident heart failure in men and women: the EPIC (European Prospective Investigation into Cancer and Nutrition)Norfolk prospective study. JACC Heart Fail. 2014;2(4):380-9. doi:10.1016/j.jchf.2014.03.010.

41. Fohtung RB, Brown DL, Koh WJ, et al. Bone Mineral Density and Risk of Heart Failure in Older Adults: The Cardiovascular Health Study. J Am Heart Assoc. 2017;13;6(3):e004344. doi:10.1161/JAHA.116.004344.

42. Aluoch AO, Jessee R, Habal H, et al. Heart failure as a risk factor for osteoporosis and fractures. Curr Osteoporos Rep. 2012;10(4):258-69. doi:10.1007/s11914-012-0115-2.

43. Gage BF, Birman-Deych E, Radford MJ, et al. Risk of Osteoporotic Fracture in Elderly Patients Taking Warfarin: Results from the National Registry of Atrial Fibrillation 2. Arch Intern Med. 2006;166(2):241-6. doi:10.1001/archinte.166.2.241.


Supplementary files

Review

For citations:


Skripnikova I.A., Yaralieva E.K., Drapkina O.M. Heart failure and osteoporosis: common pathogenetic components. Cardiovascular Therapy and Prevention. 2022;21(6):3233. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3233

Views: 1071


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)