Using short tandem repeat profiling to validate cell lines in biobanks
https://doi.org/10.15829/1728-8800-2022-3386
Abstract
Aim. To approve the COrDIS kit (Gordiz, Russia) for the authenticity of cell lines from the Bioresource Collection of the N.N. Blokhin National Medical Research Center of Oncology by the short tandem repeat (STR) profiling.
Material and methods. The chosen method proved to be a reliable and reproducible option. With this approach, a number of polymorphic STR loci are amplified using commercially available primer sets. Polymerase chain reaction (PCR) products are analyzed simultaneously with size standards using automated fluorescent detection methods. The results are presented as a simple number code corresponding to the lengths of the PCR products amplified at each locus. By applying this method to cell lines, the laboratory can both authenticate commercial cell lines and build a database of their lines. In the work, we used the COrDIS EXPERT 26 kit (Gordiz, Russia), validated for molecular genetic identification of personality based on multiplex PCR analysis of 26 highly polymorphic loci of human genomic deoxyribonucleic acid. PCR results were analyzed by capillary electrophoresis using an automatic genetic analyzer with laser-induced fluorescence detection (Applied Biosystems 3500xL).
Results. When testing the method, profiling of 37 cell lines was carried out, of which 18 were announced in international databases and 19 were unique, obtained at the N. N. Blokhin National Medical Research Center of Oncology, as well as a cell line mixture in order to determine the limits of contamination detection. The obtained results showed the correspondence of commercial cell lines with the data in international databases. Within the framework of this work, profiles of unique lines were obtained and the foundation of own genetic database was laid. Studies to identify the limit of contamination detection by another line have shown that even 4% of the contaminant culture in the total pool can be used to identify its individual alleles.
Conclusion. The results obtained indicate the possibility of using the method to identify samples of the collection and detect intraspecific contamination.
About the Authors
E. N. KosobokovaRussian Federation
Moscow
A. A. Malchenkova
Russian Federation
Moscow
N. A. Kalinina
Russian Federation
Moscow
V. S. Kosorukov
Russian Federation
Moscow
References
1. Allen M, Bjerke M, Edlund H, et al. Origin of the U87MG glioma cell line: Good news and bad news. Sci Transl Med. 2016;8(354):354re3. doi:10.1126/scitranslmed.aaf6853.
2. Elgui de Oliveira D, Marques CS, Losi VC. "Cell identity" crisis: Another call for immediate action. Cancer Lett. 2016;381(1):122- 3. doi:10.1016/j.canlet.2016.07.031.
3. Horbach SPJM, Halffman W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PLoS One. 2017;12(10):e0186281. doi:10.1371/journal.pone.0186281.
4. Capes-Davis A, Theodosopoulos G, Atkin I, et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer. 2010;127(1):1-8. doi:10.1002/ijc.25242.
5. Drexler HG, Dirks WG, MacLeod RA, et al. False and mycoplasma-contaminated leukemia-lymphoma cell lines: time for a reappraisal. Int J Cancer. 2017;140(5):1209-14. doi:10.1002/ijc.30530.
6. Neimark J. Line of attack. Science. 2015;347(6225):938-40. doi:10.1126/science.347.6225.938.
7. Jarvis MF, Williams M. Irreproducibility in Preclinical Biomedical Research: Perceptions, Uncertainties, and Knowledge Gaps. Trends Pharmacol Sci. 2016;37(4):290-302. doi:10.1016/j.tips.2015.12.001.
8. Geraghty RJ, Capes-Davis A, Davis JM, et al. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014; 111(6):1021-46. doi:10.1038/bjc.2014.166.
9. Visconti P, Parodi F, Parodi B, et al. Short tandem repeat profiling for the authentication of cancer stem-like cells. Int J Cancer. 2021;148(6):1489-98. doi:10.1002/ijc.33370.
10. Almeida JL, Dakic A, Kindig K, et al. Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines. PLoS One. 2019;14(6):e0218412. doi:10.1371/journal.pone.0218412.
11. Gu M, Yang M, He J, et al. A silver lining in cell line authentication: Short tandem repeat analysis of 1373 cases in China from 2010 to 2019. Int J Cancer. 2022;150(3):502-8. doi:10.1002/ijc.33789.
12. Castro F, Dirks WG, Fähnrich S, et al. High-throughput SNPbased authentication of human cell lines. Int J Cancer. 2013;132(2):308-14. doi:10.1002/ijc.27675.
13. Didion JP, Buus RJ, Naghashfar Z, et al. SNP array profiling of mouse cell lines identifies their strains of origin and reveals crosscontamination and widespread aneuploidy. BMC Genomics. 2014;15(1):847. doi:10.1186/1471-2164-15-847.
14. Fasterius E, Raso C, Kennedy S, et al. A novel RNA sequencing data analysis method for cell line authentication. PLoS One. 2017;12(2):e0171435. doi:10.1371/journal.pone.0171435.
15. Chen X, Qian W, Song Z, et al. Authentication, characterization and contamination detection of cell lines, xenografts and organoids by barcode deep NGS sequencing. NAR Genom Bioinform. 2020;2(3):lqaa060. doi:10.1093/nargab/lqaa060.
16. Lung O, Candlish R, Nebroski M, et al. High-throughput sequencing for species authentication and contamination detection of 63 cell lines. Sci Rep. 2021;11(1):21657. doi:10.1038/s41598-021-00779-5.
17. Masters JR, Thomson JA, Daly-Burns B, et al. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci USA. 2001;98(14):8012-7. doi:10.1073/pnas.121616198.
18. Melnikova EV, Merkulova OV, Merkulov VA, et al. Human cell line identification by typing of short tandem repeats: world practice. Biopharm.J 2015;7(6):3-10. (In Russ.) EDN VRRBXF.
19. Khorolsky MD, Semenova IS, Melnikova EN, et al. The use of short tandem repeat analysis for cell line authentification. BIOpreparaty. Profilaktika, diagnostika, lechenie. 2019;19(4):251-60. (In Russ.) doi:10.30895/2221-996X-2019-19-4-251-260.
20. Tan JYY, Tan YP, Ng S, et al. A preliminary evaluation study of new generation multiplex STR kits comprising of the CODIS core loci and the European Standard Set loci. J Forensic Leg Med. 2017;52:16-23. doi:10.1016/j.jflm.2017.07.017.
21. Cho WC, Jung JK, Cho Y, et al. Validation and assessment of the Investigator® 24plex QS kit for forensic casework application: Comparison with the PowerPlex® fusion system and GlobalFiler™ PCR amplification kits. Leg Med (Tokyo). 2021;52:101902. doi:10.1016/j.legalmed.2021.101902.
22. Bär W, Brinkmann B, Budowle B, et al. DNA recommendations. Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. International Society for Forensic Haemogenetics. Int J Legal Med. 1997;110(4):175-6. doi:10.1007/s004140050061.
23. Tanabe H, Takada Y, Minegishi D, et al. Сell line individualization by STR multiplex system in the cell bank found crosscontamination between ECV304 and EJ-1/T24. Tissue culture research communications: the journal of experimental & applied cell culture research. 1999;18:329-38. doi:10.11418/jtca1981.18.4_329.
Supplementary files
Review
For citations:
Kosobokova E.N., Malchenkova A.A., Kalinina N.A., Kosorukov V.S. Using short tandem repeat profiling to validate cell lines in biobanks. Cardiovascular Therapy and Prevention. 2022;21(11):3386. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3386