Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ДИАГНОСТИКИ В ПРОФИЛАКТИЧЕСКОЙ МЕДИЦИНЕ

https://doi.org/10.15829/1728-8800-2014-4-75-80

Полный текст:

Аннотация

Секвенирование первого генома человека и последовавшее за ним стремительное развитие технологий, вызвавших существенное снижение стоимости генетического анализа и ускорение сроков его проведения, сделали возможным широкое внедрение методов генетической диагностики в клиническую практику. Современные методы молекулярной генетики позволяют анализировать наследственные факторы как на уровне хромосом методами молекулярной цитогенетики, так и на уровне точечных мутаций с помощью полимеразной цепной реакции, микрочипов или секвенирования. Темпы развития методов секвенирования следующего поколения позволяют предсказать скорое внедрение в практику персонифицированного медицинского анализа большого массива генетических данных, которые можно будет использовать для прогнозирования исхода заболевания, оценки его течения, а также для назначения и коррекции фармакотерапии. В этом обзоре рассмотрены различные и, в т.ч., новые подходы к генетической диагностике как редких, так и распространенных заболеваний, их достоинства и ограничения.

Об авторах

И. В. Сидонец
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия

аспирант лаборатории “Молекулярной генетики”

Тел.: +7 (901) 512–12–71



А. Н. Мешков
ФГБУ “Государственный научно-исследовательский центр профилактической медицины” Минздрава России, Москва
Россия
к.м.н., руководитель лаборатории


Список литературы

1. Smeets DF. Historical prospective of human cytogenetics: from microscope to microarray. Clin Biochem 2004; 37 (6): 439–46.

2. Harper ME, Saunders GF. Localization of single copy DNA sequences of G-banded human chromosomes by in situ hybridization. Chromosoma 1981; 83 (3): 431–9.

3. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258 (5083): 818–21.

4. Snijders AM, Nowak N, Segraves R, et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 2001; 29 (3): 263–4.

5. Veltman JA, Schoenmakers EF, Eussen BH, et al. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am J Hum Genet 2002; 70 (5): 1269–76.

6. Salahshourifar I, Vincent-Chong VK, Kallarakkal TG, et al. Genomic DNA copy number alterations from precursor oral lesions to oral squamous cell carcinoma. Oral Oncol 2014.

7. Shaffer LG and Rosenfeld JA. Microarray-based prenatal diagnosis for the identification of fetal chromosome abnormalities. Expert Rev Mol Diagn 2013; 13 (6): 601–11.

8. Chen W, Hayward C, Wright AF, et al. Copy number variation across European populations. PLoS One 2011; 6 (8): e23087.

9. Firth HV, Richards SM, Bevan AP, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet 2009; 84 (4): 524–33.

10. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86 (5): 749–64.

11. Girirajan S, Rosenfeld JA, Cooper GM, et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 2010; 42 (3): 203–9.

12. Quinn CT. Sickle cell disease in childhood: from newborn screening through transition to adult medical care. Pediatr Clin North Am 2013; 60 (6): 1363–81.

13. Press RD, Bauer KA, Kujovich JL, et al. Clinical utility of factor V leiden (R506Q) testing for the diagnosis and management of thromboembolic disorders. Arch Pathol Lab Med 2002; 126 (11): 1304–18.

14. Messiaen LM, Callens T, Mortier G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000; 15 (6): 541–55.

15. Geelhoed EA, Harrison K, Davey A, et al. Parental perspective of the benefits of genetic testing in children with congenital deafness. Public Health Genomics 2009; 12 (4): 245–50.

16. Groeneweg JA, van der Heijden JF, Dooijes D, et al. Arrhythmogenic cardiomyopathy: diagnosis, genetic background, and risk management. Neth Heart J 2014.

17. Klee EW, Hoppman-Chaney NL, Ferber MJ. Expanding DNA diagnostic panel testing: is more better? Expert Rev Mol Diagn 2011; 11 (7): 703–9.

18. Dixon-Salazar TJ, Silhavy JL, Udpa N, et al. Exome sequencing can improve diagnosis and alter patient management. Sci Transl Med 2012; 4 (138): 138ra78.

19. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol 2003; 21 (12): 2397–406.

20. https://www.pharmgkb.org/.

21. Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986; 51 Pt 1: 263–73.

22. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res 1996; 6 (10): 995–1001.

23. Ohga S, Kubo E, Nomura A, et al. Quantitative monitoring of circulating Epstein-Barr virus DNA for predicting the development of posttransplantation lymphoproliferative disease. Int J Hematol 2001; 73 (3): 323–6.

24. van Haeften R, Palladino S, Kay I, et al. A quantitative LightCycler PCR to detect Streptococcus pneumoniae in blood and CSF. Diagn Microbiol Infect Dis 2003; 47 (2): 407–14.

25. White PL, Shetty A, Barnes RA. Detection of seven Candida species using the Light-Cycler system. J Med Microbiol 2003; 52 (Pt 3): 229–38.

26. Gerard CJ, Olsson K, Ramanathan R, et al. Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region III standards. Cancer Res 1998; 58 (17): 3957–64.

27. Jaeger U and Kainz B. Monitoring minimal residual disease in AML: the right time for real time. Ann Hematol 2003; 82 (3): 139–47.

28. Livak KJ. Allelic discrimination using fluorogenic probes and the 5’ nuclease assay. Genet Anal 1999; 14 (5–6): 143–9.

29. Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 2001; 25 (4): 386–401.

30. Borish LC and Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol 2003; 111 (2 Suppl): S460–75.

31. Gysemans CA, Waer M, Valckx D, et al. Early graft failure of xenogeneic islets in NOD mice is accompanied by high levels of interleukin-1 and low levels of transforming growth factor-beta mRNA in the grafts. Diabetes 2000; 49 (12): 1992–7.

32. Giulietti A, van Etten E, Overbergh L, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D (3) works as anti￾inflammatory. Diabetes Res Clin Pract 2007; 77 (1): 47–57.

33. Van Etten E, Branisteanu DD, Overbergh L, et al. Combination of a 1,25-dihydroxyvitamin D3 analog and a bisphosphonate prevents experimental autoimmune encephalomyelitis and preserves bone. Bone 2003; 32 (4): 397–404.

34. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 1992; 24: 104–8.

35. Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in health and disease. Annu Rev Med 2012; 63: 35–61. 36. Gilissen C, Hoischen A, Brunner HG, et al. Disease gene identification strategies for exome sequencing. Eur J Hum Genet 2012; 20 (5): 490–7.

36. Bick D and Dimmock D. Whole exome and whole genome sequencing. Curr Opin Pediatr 2011; 23 (6): 594–600.

37. Naidoo N, Pawitan Y, Soong R, et al. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics 2011; 5 (6): 577–622.

38. Kiezun A, Garimella K, Do R, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet 2012; 44 (6): 623–30.

39. Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12 (11): 745–55.

40. Worthey EA, Mayer AN, Syverson GD, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 2011; 13 (3): 255–62.

41. Kohane IS, Hsing M, Kong SW. Taxonomizing, sizing, and overcoming the incidentalome. Genet Med 2012; 14 (4): 399–404.

42. Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 1996; 6 (7): 639–45.

43. Holden AL. The SNP consortium: summary of a private consortium effort to develop an applied map of the human genome. Biotechniques 2002; Suppl: 22–4, 26.

44. Zhang TX, Haller G, Lin P, et al. Genome-wide association study identifies new disease loci for isolated clubfoot. J Med Genet 2014.

45. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009; 461 (7265): 747–53.

46. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347 (25): 1999–2009.

47. van ‘t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415 (6871): 530–6.

48. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406 (6797): 747–52.


Для цитирования:


Сидонец И.В., Мешков А.Н. ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ДИАГНОСТИКИ В ПРОФИЛАКТИЧЕСКОЙ МЕДИЦИНЕ. Кардиоваскулярная терапия и профилактика. 2014;13(4):75-80. https://doi.org/10.15829/1728-8800-2014-4-75-80

For citation:


Sidonets I.V., Meshkov A.N. GENETICS FOR DIAGNOSTICS IN PREVENTIVE MEDICINE. Cardiovascular Therapy and Prevention. 2014;13(4):75-80. (In Russ.) https://doi.org/10.15829/1728-8800-2014-4-75-80

Просмотров: 214


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)