Preview

Cardiovascular Therapy and Prevention

Advanced search

Mammographic breast density and cardiovascular disease in women. A literature review

https://doi.org/10.15829/1728-8800-2024-4064

Abstract

The world is searching for new simple and economically available gender-specific markers to improve cardiovascular risk stratification in women. The aim of this review was to analyze the association of mammographic density (MD) with cardiovascular disease (CVD). In low MD, i.e., high relative mammary gland fat content, there is a higher incidence of the main risk factors for CVD: hypertension, hyperlipidemia, hyperglycemia, excess body weight, as well as an increase in the volume of fat depots, visceral and ectopic fat. Low MD is associated with a higher 10-year risk of adverse cardiovascular events such as coronary artery disease, stroke, peripheral arterial disease, revascularization, and heart failure, and may serve as a predictor of their development. Including MD in the Framingham Risk Score model improves its accuracy. Identification of low MD, as a marker of high cardiovascular risk, allows the use of mammography for early detection and prevention of the two most dangerous diseases among the female population — breast cancer and CVD. 

About the Authors

E. V. Bochkareva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



N. I. Rozhkova
Herzen Moscow Oncology Research Institute — branch of the National Medical Research Center of Radiology; Peoples' Friendship University of Russia
Russian Federation

Moscow



E. K. Butina E. K
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



I. V. Kim
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. V. Molchanova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



S. Yu. Mikushin
Herzen Moscow Oncology Research Institute — branch of the National Medical Research Center of Radiology; Peoples' Friendship University of Russia
Russian Federation

Moscow



P. V. Ipatov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine

Moscow



References

1. Timmis A, Townsend N, Gale CP, et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 2019;20(41):12-85. doi:10.1093/eurheartj/ehz859.

2. DeFilippis AP, Young R, Carrubba CJ, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162:266-75. doi:10.7326/M14-1281.

3. Koh TJW, Tan HJH, Ravi PRJ, Sng JWZ, et al. Association Between Breast Arterial Calcifications and Cardiovascular Disease: A Systematic Review and Meta-analysis. Can J Cardiol. 2023; 39(12):1941-50. doi:10.1016/j.cjca.2023.07.024.

4. Bochkareva EV, Butina EK, Bayramkulova NKh, et al. Association of breast arterial calcification and carotid atherosclerosis as a marker of cardiovascular risk. Rational Pharmacotherapy in Cardiology 2023;19(5):435-43. (In Russ.) doi:10.20996/1819-6446-2023-2950.

5. Amin NP, Martin SS, Blaha MJ, et al. Headed in the right direction but at risk for miscalculation: a critical appraisal of the 2013 ACC/AHA risk assessment guidelines. J Am Coll Cardiol. 2014; 63:2789-94. doi:10.1016/j.jacc.2014.04.0102-7.

6. Lee SC, Phillips M, Bellinge J, et al. Is breast arterial calcification associated with coronary artery disease? A systematic review and meta-analysis. PLoS One. 2020;15(7):e0236598. doi:10.1371/journal.pone.0236598.

7. Margolies LR. Mammography, Breast Density, and Major Adverse Cardiac Events: Potential Buy-One-Get-One-Free Lifesaving Bonus Finding. JACC Cardiovasc Imaging. 2021;14(2):439-41. doi:10.1016/j.jcmg.2020.09.008.

8. Magni V, Capra D, Cozzi A, et al. Mammography biomarkers of cardiovascular and musculoskeletal health: A review. Maturitas. 2023;167:75-81. doi:10.1016/j.maturitas.2022.10.001.

9. Pettersson A, Graff RE, Ursin G, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2014;106(5):dju078. doi: 10.1093/jnci/dju078.

10. Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer. Breast Cancer. 2018; 25(3):259-67. doi:10.1007/s12282-018-0857-5.

11. McCormack VA, dos Santos Silva I.Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159-69. doi:10.1158/1055-9965.EPI-06-0034.

12. Freer PE. Mammographic breast density: impact on breast cancer risk and implications for screening. Radiographics. 2015; 35(2):302-15. doi:10.1148/rg.352140106.

13. Sickles EA, D’Orsi CJ, Bassett LW. ACR BI-RADS® Mammography. ACR BI-RADS® Atlas, 5th, American College of Radiology, Reston, VA, USA, 2013. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads.

14. Boyd NF, Byng JW, Jong RA, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995;87(9):670-5. doi:10.1093/jnci/87.9.670.

15. Gram IT, Funkhouser E, Tabár L. The Tabár classification of mammographic parenchymal patterns. Eur J Radiol. 1997;24(2): 131-6. doi:10.1016/s0720-048x(96)01138-2.

16. Tran TXM, Chang Y, Kim S, et al. Mammographic breast density and cardiovascular disease risk in women. Atherosclerosis. 2023;387:117392. doi:10.1016/j.atherosclerosis.2023.117392.

17. Al-Mohaissen M, Alkhedeiri A, Al-Madani O, et al. Association of mammographic density and benign breast calcifications individually or combined with hypertension, diabetes, and hypercholesterolemia in women ≥40 years of age: a retrospective study. J Investig Med. 2022;70(5):1308-15. doi:10.1136/jim-2021-002296.

18. Sardu C, Gatta G, Pieretti G, et al. Pre-Menopausal Breast Fat Density Might Predict MACE During 10 Years of Follow-Up: The BRECARD Study. JACC Cardiovasc Imaging. 2021;14(2):426-38. doi:10.1016/j.jcmg.2020.08.028.

19. Grassmann F, Yang H, Eriksson M, et al. Mammographic features are associated with cardiometabolic disease risk and mortality. Eur Heart J. 2021;42(34):3361-70. doi:10.1093/eurheartj/ehab502.

20. Eriksson M, Li J, Leifland K, et al. A comprehensive tool for measuring mammographic density changes over time. Breast Cancer Res Treat. 2018;169(2):371-9. doi:10.1007/s10549-018-4690-5.

21. Azam S, Lange T, Huynh S, et al. Hormone replacement therapy, mammographic density, and breast cancer risk: a cohort study. Cancer Causes Control. 2018;29(6):495-505. doi:10.1007/s10552-018-1033-0.

22. Barber M, Nguyen LS, Wassermann J, et al. Cardiac arrhythmia considerations of hormone cancer therapies. Cardiovasc Res. 2019;115(5):878-94. doi:10.1093/cvr/cvz020.

23. Burton A, Maskarinec G, Perez-Gomez B, et al. Mammographic density and ageing: A collaborative pooled analysis of crosssectional data from 22 countries worldwide. PLoS Med. 2017;14(6):e1002335. doi:10.1371/journal.pmed.1002335.

24. Henson DE, Tarone RE, Nsouli H. Lobular involution: the physiological prevention of breast cancer. J Natl Cancer Inst. 2006; 98(22):1589-90. doi:10.1093/jnci/djj454.

25. Boyd NF, Stone J, Martin LJ, et al. The association of breast mitogens with mammographic densities. Br J Cancer. 2002;87(8): 876-82. doi:10.1038/sj.bjc.6600537.

26. Maas AHEM, Rosano G, Cifkova R, et al. Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from European cardiologists, gynaecologists, and endocrinologists. Eur Heart J. 2021;42(10):967-84. doi:10.1093/eurheartj/ehaa1044.

27. Hudson S, Vik Hjerkind K, Vinnicombe S, et al. Adjusting for BMI in analyses of volumetric mammographic density and breast cancer risk. Breast Cancer Res. 2018;20(1):156. doi:10.1186/s13058-018-1078-8.

28. Dorgan JF, Klifa C, Shepherd JA, et al. Height, adiposity and body fat distribution and breast density in young women. Breast Cancer Res. 2012;14(4):R107. doi:10.1186/bcr3228.

29. Schautz B, Later W, Heller M, et al. Associations between breast adipose tissue, body fat distribution and cardiometabolic risk in women: cross-sectional data and weight-loss intervention. Eur J Clin Nutr. 2011;65(7):784-90. doi:10.1038/ejcn.2011.35.

30. Janiszewski PM, Saunders TJ, Ross R.Breast volume is an independent predictor of visceral and ectopic fat in premenopausal women. Obesity (Silver Spring). 2010;18(6):1183-7. doi:10.1038/oby.2009.336.

31. Neeland IJ, Ross R, Després JP, et al. International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715-25. doi:10.1016/S2213-8587(19)30084-1.

32. Neeland IJ, Hughes C, Ayers CR, et al. Effects of visceral adiposity on glycerol pathways in gluconeogenesis. Metabolism. 2017;67:80-9. doi:10.1016/j.metabol.2016.11.008.

33. Ouchi N, Parker JL, Lugus JJ, Walsh K.Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97. doi:10.1038/nri2921.

34. Després JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126(10):1301-13. doi:10.1161/CIRCULATIONAHA.111.067264.

35. Manrique-Acevedo C, Chinnakotla B, Padilla J, et al. Obesity and cardiovascular disease in women. Int J Obes (Lond). 2020;44(6): 1210-26. doi:10.1038/s41366-020-0548-0.

36. Ooms EA, Zonderland HM, Eijkemans MJ, et al. Mammography: interobserver variability in breast density assessment. Breast. 2007;16(6):568-76. doi:10.1016/j.breast.2007.04.007.

37. Alomaim W, O'Leary D, Ryan J, et al. Variability of Breast Density Classification Between US and UK Radiologists. J Med Imaging Radiat Sci. 2019;50(1):53-61. doi:10.1016/j.jmir.2018.11.002.

38. Lehman CD, Yala A, Schuster T, et al. Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation. Radiology. 2019;290(1):52-8. doi:10.1148/radiol.2018180694.

39. Magni V, Interlenghi M, Cozzi A, et al. Development and Validation of an AI-driven Mammographic Breast Density Classification Tool Based on Radiologist Consensus. Radiology. Artif Intell. 2022;4(2):e210199. doi:10.1148/ryai.210199.


Supplementary files

What is already known about the subject?

  • The world is developing approaches to using mammography not only for diagnosing breast cancer (BC), but also for determining the risk of cardiovascular disease (CVD) in women. In the last few years, mammographic breast density (MD) has been considered as one of the potential mammographic markers of cardiovascular risk.
  • The MD depends on the relative fat content in this organ; with a low MD, the breast predominantly consists of adipose tissue.

What might this study add?

  • Current literature suggests that low MD is associated with a higher 10-year risk of major adverse cardiovascular events (coronary artery disease, stroke, peripheral arterial disease, revascularization, heart failure).
  • With low MD, there is a higher frequency of the main risk factors for CVD, including an increase in the volume of fat depots, visceral and ectopic fat.
  • Including MD into the Framingham Risk Score model improves its accuracy.

Review

For citations:


Bochkareva E.V., Rozhkova N.I., Butina E. K E.K., Kim I.V., Molchanova O.V., Mikushin S.Yu., Ipatov P.V., Drapkina O.M. Mammographic breast density and cardiovascular disease in women. A literature review. Cardiovascular Therapy and Prevention. 2024;23(8):4064. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4064

Views: 417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)