Preview

Cardiovascular Therapy and Prevention

Advanced search

Efficacy and safety of renal denervation in comorbid patients with resistant hypertension: results of a two-year follow-up

https://doi.org/10.15829/1728-8800-2025-4326

EDN: MXDQWA

Abstract

Aim. To study the clinical efficacy of renal denervation (RDN) in patients with resistant hypertension (RH), type 2 diabetes (T2D) and coronary artery disease (CAD) after endovascular revascularization.

Material and methods. The prospective, non-randomized, controlled, single-center study included 75 patients with true RH, T2D and CAD after complete endovascular revascularization. The participants were 

distributed in a 1:1,5 ratio into the RDN group and the control group. RDN was performed through femoral vascular access with a Spyral catheter (Medtronic, USA). The follow-up period was 24 months. The primary endpoint was the change in mean 24-hour arterial pressure (BP). The secondary endpoint was the assessment of the incidence of adverse cardiovascular and cerebral events. Changes in paraclinical parameters and drug therapy were also assessed.

Results. In the RDN group, mean 24-hour systolic BP decreased from 158 [144;167] to 147 [137;156] mm Hg (p<0,05) and diastolic BP from 97 [82;112] to 89 [75;101] mm Hg (p<0,05); glycated hemoglobin — from 7,6 [6,9;8,4] to 6,6 [6,2;7,2]% (p<0,05). In the RDN group, a decrease in the number of antihypertensive drugs taken was noted due to diuretic therapy discontinuation (p<0,05). The rate of major adverse cardiovascular events was 26,7% in the RDN group and 24,4% in the control group. The mean average value of late lumen loss of the stented segment according to quantitative coronary angiographic analysis (qualitative comparative analysis, QCA) was 24,7% in the RDN group and 28,1% in the control group. The incidence of de novo stenosis was 23,3% in the RDN group and 22,2% in the control group. There were no differences between the groups. The glomerular filtration rate in both groups did not change significantly and remained stable.

Conclusion. The study results confirm the favorable pleiotropic effects and safety of RDN in polymorbid patients with a combination of RH, T2D and CAD with the total sympathetic nervous system involvement, which offers opportunities for a wider study and implementation of this interventional procedure in clinical practice.

About the Authors

N. A. Arablinsky
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



D. A. Feshchenko
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



F. B. Shukurov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



M. T. Taliuridze
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



D. K. Vasiliev
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Kobalava ZhD, Konradi AO, Nedogoda SV, et al. 2024 Clinical practice guidelines for Hypertension in adults. Russian Journal of Cardiology. 2024;29(9):6117. (In Russ.) doi:10.15829/1560-4071-2024-6117.

2. Franklin SS, Lopez VA, Wong ND, et al. Single versus combined blood pressure components and risk for cardiovascular disease: the Framingham Heart Study. Circulation. 2009;119(2):243-50. doi:10.1161/CIRCULATIONAHA.108.797936.

3. Kuzmin OB, Zhezha VV, Landar LN, et al. Resistant arterial hyper-tension in patients with chronic kidney disease: prevalence, prognostic significance, reasons and approaches to antihypertensive therapy. Nephrology. 2019;23(1):37-44. (In Russ.) doi:10.24884/1561-6274-2019-23-1-37-44.

4. Ostroumova OD, Goloborodova IV, Fomina VМ. Cardiovascular risk in type 2 diabetes patients. Cardiovascular Therapy and Pre¬vention. 2018;17(4):81-94. (In Russ.) doi:10.15829/1728-8800-2018-4-81-94.

5. Standl E, Khunti K, Hansen TB, et al. The global epidemics of diabetes in the 21st century: Current situation and perspecti¬ves. Eur J Prev Cardiol. 2019;26(2_suppl):7-14. doi:10.1177/2047487319881021.

6. Paramasivam G, Devasia T, Jayaram A, et al. In-stent restenosis of drug-eluting stents in patients with diabetes melli¬tus: clinical presentation, angiographic features, and outcomes. Anatol J Cardiol. 2020;23(1):28-34. doi:10.14744/AnatolJCardiol.2019.72916.

7. Zhao L, Zhu W, Zhang X, et al. Effect of diabetes mellitus on long-term outcomes after repeat drug-eluting stent implantation for in-stent restenosis. BMC Cardiovasc Disord. 2017;17(1):16. doi:10.1186/s12872-016-0445-6.

8. Mone P, Gambardella J, Minicucci F, et al. Hyperglycemia drives stent restenosis in STEMI patients. Diabetes Care. 2021;44(11): e192-3. doi:10.2337/dc21-0939.

9. Zyubanova IV, Mordovin VF. Renin and aldosterone con¬centrations change depending on the arterial blood pressure long-term after renal denervation in patients with resistant hypertension. Siberian Journal of Clinical and Experimental Medicine. 2017;32(1):19-23. (In Russ.) doi:10.29001/2073-8552-2017-32-1-19-23.

10. Pekarskiy SE, Baev AE, Falkovskaya AYu, et al. Anatomically optimized distal renal denervation — sustained blood pressure lowering efficacy during 3 years after the intervention. Circulation Pathology and Cardiac Surgery. 2020;24(3S):98-107. (In Russ.) doi:10.21688/1681-3472-2020-3S-98-107.

11. 2023 ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension and the European Renal Association. J Hypertens. 2023;41(12):1874-2071. doi:10.1097/HJH.0000000000003480.

12. Arablinsky NA, Feshchenko DA, Shukurov FB, et al. Promising areas of renal denervation application. Russian Journal of Cardiology. 2024;29(2S):5847. (In Russ.) doi:10.15829/1560-4071-2024-5847.

13. Arablinsky NA, Feshchenko DA, Rudenko BA, et al. Long-term outcomes of renal denervation in the treatment of comorbid patients with hypertension, diabetes and coronary atherosclerosis. Cardiovascular Therapy and Prevention. 2023; 22(9):3706. (In Russ.) doi:10.15829/1728-8800-2023-3706.

14. Booth LC, Nishi EE, Yao ST, et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension. 2015; 65(2):393-400. doi:10.1161/HYPERTENSIONAHA.114.04176.

15. Panchavinnin P, Wanthong S, Roubsanthisuk W, et al. Long-term outcome of renal nerve denervation for resistant hypertension. Hypertens Res. 2022;45(6):962-6. doi:10.1038/s41440-022-00910-7.

16. Zeijen VJM, Feyz L, Nannan Panday R, et al. Long-term follow-up of patients undergoing renal sympathetic denervation. Clin Res Cardiol. 2022;111(11):1256-68. doi:10.1007/s00392-022-02056-5.

17. Sesa-Ashton G, Nolde JM, Muente I, et al. Catheter-Based Renal Denervation: 9-Year Follow-Up Data on Safety and Blood Pressure Reduction in Patients With Resistant Hypertension. Hypertension. 2023;80(4):811-9. doi:10.1161/HYPERTENSIONAHA.122.20853.

18. Savelyeva NYu, Zherzhova AYu, Mikova EV, et al. Radiofrequency denervation of the renal arteries in patients with resistant arterial hypertension: 3 years of observation experience. Systemic Hypertension. 2019;16(4):65-9. (In Russ.) doi:10.26442/2075082X.2019.4.190596.

19. Falkovskaya AYu, Mordovin VF, Pekarsky SE, et al. Dynamics of glycemic control after renal denervation in patients with resistant hypertension and type 2 diabetes mellitus. Bulletin of Siberian Medicine. 2015;14(5):82-90. (In Russ.) doi:10.20538/1682-0363-2015-5-82-90.

20. Aripov M, Mussayev A, Alimbayev S, et al. Individualised renal artery denervation improves blood pressure control in Kazakhstani patients with resistant hypertension. Kardiol Pol. 2017; 75(2):101-7. doi:10.5603/KP.a2016.0096.

21. Zhang Z, Liu K, Xiao S, et al. Effects of catheter based renal denervation on glycemic control and lipid levels: a systematic review and metaanalysis. Acta Diabetol. 2021;58:603-14. doi:10.1007/s00592-020-01659-6.

22. Miroslawska AK, Gjessing PF, Solbu MD, et al. Metabolic effects two years after renal denervation in insulin resistant hypertensive patients. The Re-Shape CV-risk study. Clin Nutr. 2021;40(4):1503-9. doi:10.1016/j.clnu.2021.02.027.

23. Manukyan M, Falkovskaya A, Mordovin V, et al. Favorable effect of renal denervation on elevated renal vascular resistance in patients with resistant hypertension and type 2 diabetes mellitus. Front Cardiovas Med. 2022;9(9):1010546. doi:10.3389/fcvm.2022.1010546.

24. Gregory D Fink, Jeremiah T Phelps. Can we predict the blood pressure response to renal denervation? Auton Neurosci. 2017; 204:112-8. doi:10.1016/j.autneu.2016.07.011.

25. Schmieder RE, Högerl K, Jung S, et al. Patient preference for therapies in hypertension: a cross-sectional survey of German patients. Clin Res Cardiol. 2019;108(12):1331-42. doi:10.1007/s00392-019-01468-0.

26. Zhang Z, Zhang X, Ye R, et al. Patient preference for renal denervation therapy in hypertension: a cross-sectional survey in Chengdu, China. Hypertens Res. 2022;45(6):954-61. doi:10.1038/s41440-022-00912-5.

27. Kario K, Kagitani H, Hayashi S, et al. A Japan nationwide web-based survey of patient preference for renal denervation for hypertension treatment. Hypertens Res. 2022;45(2):232-40. doi:10.1038/s41440-021-00760-9.

28. Bartus K, Litwinowicz R, Sadowski J, et al. Clinical factors predicting blood pressure reduction after catheter-based renal denervation. Postep Kardiol Inter. 2018;14(3):270-5. doi:10.5114/aic.2018.78330.

29. Sanders MF, Blankestijn PJ. Chronic Kidney Disease As a Potential Indication for Renal Denervation. Front Physiol. 2016; 7:220. doi:10.3389/fphys.2016.00220.

30. Warchol-Celinska E, Prejbisz A, Kadziela J, et al. Renal Denervation in Resistant Hypertension and Obstructive Sleep Apnea: Randomized Proof-of-Concept Phase II Trial. Hypertension. 2018;72(2):381-90. doi:10.1161/HYPERTENSIONAHA.118.11180.

31. Kario K, Hettrick DA, Prejbisz A, Januszewicz A. Obstructive Sleep Apnea-Induced Neurogenic Nocturnal Hypertension: A Potential Role of Renal Denervation? Hypertension. 2021;77(4):1047-60. doi:10.1161/HYPERTENSIONAHA.120.16378.


Supplementary files

What is already known about the subject?

  • Renal denervation (RDN) is an interventional procedure that involves the ablation of sympathetic nerve fibers, with a high density located in close proximity to renal artery walls.
  • RDN is pathogenetically justified in the treatment of resistant hypertension (RH), but other effects of RDN remain not fully understood.

What might this study add?

  • The article presents the results of a prospective, non-randomized, controlled, single-­center study on the safety and effectiveness of RDN in individuals with RH, type 2 diabetes (T2D) and coronary arte­ry disease (CAD) after complete endovascular re­vas­cu­larization.
  • The study confirmed the safety of RDN and de­monstrated positive effects of the technique in the con­text of better control of modifiable risk factors for the progression of hypertension and T2D due to a po­sitive effect on blood pressure and carbohydrate meta­bolism control parameters.
  • Despite better control of the course of RH and T2D, RDN did not have a significant effect on clinical outcomes and coronary artery patency in a cohort of patients with a combination of RH, T2D and CAD.

Review

For citations:


Arablinsky N.A., Feshchenko D.A., Shukurov F.B., Taliuridze M.T., Vasiliev D.K., Drapkina O.M. Efficacy and safety of renal denervation in comorbid patients with resistant hypertension: results of a two-year follow-up. Cardiovascular Therapy and Prevention. 2025;24(3):4326. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4326. EDN: MXDQWA

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)