Диагностика артериальной жесткости с помощью сердечно-лодыжечного сосудистого индекса. Согласованное мнение экспертов
https://doi.org/10.15829/1728-8800-2025-4481
EDN: FDECVC
Аннотация
Артериальная жесткость, измеряемая с помощью скорости пульсовой волны на каротидно-феморальном сегменте, является независимым предиктором сердечно-сосудистой смертности и рекомендована в качестве эталонного стандарта. Определение сердечно-лодыжечного индекса является простым, хорошо стандартизированным, точным и воспроизводимым методом оценки артериальной жесткости, не зависящим от уровня артериального давления во время измерения. Цель настоящего документа — анализ и систематизация новых фактических данных, разработка экспертного мнения о значимости диагностики артериальной жесткости и применении сердечно-лодыжечного индекса.
Ключевые слова
Об авторах
В. И. ПодзолковРоссия
Подзолков Валерий Иванович — профессор, д.м.н., зав. кафедрой факультетской терапии 2 ИКМ им. Н. В. Склифосовского
Москва
Т. А. Сафронова
Россия
Сафронова Татьяна Аркадьевна — доцент, к.м.н., доцент кафедры факультетской терапии 2, ИКМ им. Н. В. Склифосовского
Москва
Ю. А. Васюк
Россия
Васюк Юрий Александрович — профессор, д.м.н., зав. кафедрой госпитальной терапии 1
Москва
Ю. В. Котовская
Россия
Котовская Юлия Викторовна — профессор, д.м.н., зам. директора по научной работе ОСП Российский геронтологический научно-клинический центр ФГАОУ ВО "РНИМУ им. Н. И. Пирогова" Минздрава России (Пироговский Университет)
Москва
О. А. Кисляк
Россия
Кисляк Оксана Андреевна — профессор, д.м.н., профессор кафедры факультетской терапии Института клинической медицины
Москва
А. В. Стародубова
Россия
Стародубова Антонина Владимировна — д.м.н., доцент, зам. директора по научной и лечебной работе ФГБУН "Федеральный исследовательский центр питания и биотехнологии"; зав. кафедрой факультетской терапии Института клинической медицины ФГАОУ ВО "РНИМУ им. Н. И. Пирогова" Минздрава России (Пироговский Университет)
Москва
Ф. Ю. Копылов
Россия
Копылов Филипп Юрьевич — профессор, д.м.н., директор Института персонализированной кардиологии Центра "Цифровой биодизайн и персонализированное здравоохранение"
Москва
М. Е. Евсевьева
Россия
Евсевьева Мария Евгеньевна — профессор, д.м.н., зав. кафедрой факультетской терапии ФГБОУ ВО "Ставропольский государственный медицинский университет" Минздрава России, руководитель Центра здоровья и антивозрастной медицины НИО СтГМУ, Заслуженный врач РФ
Ставрополь
А. Н. Сумин
Россия
Сумин Алексей Николаевич — д.м.н., зав. лабораторией коморбидности при сердечно-сосудистых заболеваниях отдела клинической кардиологии
Кемерово
А. И. Тарзиманова
Россия
Тарзиманова Аида Ильгизовна — профессор, д.м.н., профессор кафедры факультетской терапии 2 ИКМ им. Н. В. Склифосовского
Москва
О. Д. Остроумова
Россия
Остроумова Ольга Дмитриевна — профессор, д.м.н., зав. кафедрой терапии и полиморбидной патологии им. акад. М. С. Вовси ФГБОУ ДПО "Российская медицинская академия непрерывного профессионального образования" Минздрава России; профессор кафедры клинической фармакологии и пропедевтики внутренних болезней ФГАОУ ВО "Первый МГМУ им. И. М. Сеченова" Минздрава России (Сеченовский Университет); профессор кафедры терапии, кардиологии и функциональной диагностики с курсом нефрологии ФГБУ ДПО "Центральная государственная медицинская академия Управления делами Президента РФ"
Москва
В. Н. Ларина
Россия
Ларина Вера Николаевна — профессор, д.м.н., зав. кафедрой поликлинической терапии Института клинической медицины
Москва
О. С. Павлова
Беларусь
Павлова Ольга Степановна — доцент, д.м.н., зав. лабораторией артериальной гипертонии, Республиканский научно-практический центр "Кардиология", профессор кафедры кардиологии и внутренних болезней
Минск
С. В. Иванова
Россия
Иванова Светлана Владимировна — доцент, д.м.н., профессор кафедры клинической функциональной диагностики лечебного факультета НОИ клинической медицины им. Н. А. Семашко
Москва
В. С. Чулков
Россия
Чулков Василий Сергеевич — доцент, д.м.н., директор медицинского института, профессор кафедры внутренних болезней
Великий Новгород
А. А. Беставашвили
Россия
Беставашвили Афина Автандиловна — к.м.н., с.н.с. Института персонализированной кардиологии Центра "Цифровой биодизайн и персонализированное здравоохранение"
Москва
А. И. Кочетков
Россия
Кочетков Алексей Иванович — доцент, к.м.н., доцент кафедры терапии и полиморбидной патологии имени академика М. С. Вовси
Москва
Ю. В. Лискова
Россия
Лискова Юлия Владимировна — доцент, д.м.н., профессор кафедры факультетской терапии Института клинической медицины
Москва
А. В. Лузина
Россия
Лузина Александра Вячеславовна — к.м.н., н.с. лаборатории сердечно-сосудистого старения, ОСП Российский геронтологический научно-клинический центр, ФГАОУ ВО "РНИМУ им. Н. И. Пирогова" Минздрава России (Пироговский Университет)
Москва
А. Е. Покровская
Россия
Покровская Анна Евгеньевна — доцент, к.м.н., доцент кафедры факультетской терапии 2, ИКМ им. Н. В. Склифосовского
Москва
О. В. Сергеева
Россия
Сергеева Оксана Владимировна — к.м.н., доцент кафедры факультетской терапии ФГБОУ ВО "Ставропольский государственный медицинский университет" Минздрава России, врач-кардиолог Центра здоровья и антивозрастной медицины НИО СтГМУ
Ставрополь
Е. Ю. Шупенина
Россия
Шупенина Елена Юрьевна — к.м.н., профессор кафедры госпитальной терапии 1
Москва
А. Е. Брагина
Россия
Брагина Анна Евгеньевна — доцент, д.м.н., профессор кафедры факультетской терапии 2 ИКМ им. Н. В. Склифосовского
Москва
Список литературы
1. Avolio AP, Kuznetsova T, Heyndrickx GR, et al. Arterial flow, pulse pressure and pulse wave velocity in men and women at various ages. Adv Exp Med Biol. 2018;1065:153-68. doi:10.1007/978-3-319-77932-4_10.
2. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and allcause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13): 1318-27. doi:10.1016/j.jacc.2009.10.061.
3. Asmar R, Stergiou G, de la Sierra A, et al. Blood pressure measurement and assessment of arterial structure and function: an expert group position paper. Journal of Hypertension. 2024; 42(9):1465-81. doi:10.1097/HJH.0000000000003787.
4. Cheung AK, Whelton PK, Muntner P, et al. International consensus on standardized clinic blood pressure measurements a call to action. Am J Med. 2023;136:438-45. doi:10.1016/j.amjmed.2022.12.015.
5. Stergiou GS, Kyriakoulis KG, Kollias A.Office blood pressure measurement types: different methodology S different clinical conclusions. J Clin Hypertens. 2018;201683-5. doi:10.1111/jch.13420.
6. Stergiou GS, Parati G, Asmar R, O’Brien E, European Society of Hypertension Working Group on Blood Pressure Monitoring. Requirements for professional office blood pressure monitors. J Hypertens. 2012;30:537-42. doi:10.1097/HJH.0b013e32834fcfa5.
7. Budoff MJ, Alpert B, Chirinos JA, et al. Clinical Applications Measuring Arterial Stiffness: An Expert Consensus for the Application of Cardio-Ankle Vascular Index. Am J Hypertens. 2022; 35(5):441-53. doi:10.1093/ajh/hpab178.
8. Park JB, Sharman JE, Li Y, et al. Expert Consensus on the Clinical Use of Pulse Wave Velocity in Asia. Pulse (Basel). 2022;10(1-4):1-18. doi:10.1159/000528208.
9. Van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445-8. doi:10.1097/HJH.0b013e32834fa8b0.
10. Tomiyama H, Matsumoto C, Shiina K, Yamashina A. Brachial-ankle PWV: current status and future directions as a useful marker in the management of cardiovascular disease and/or cardiovascular risk factors. J Atheroscler Thromb. 2016;23(2):128-46. doi:10.5551/jat.32979.
11. Miyoshi T, Ito H. Arterial stiffness in health and disease: the role of cardio-ankle vascular index. J Cardiol. 2021;78(6):493-501. doi:10.1016/j.jjcc.2021.07.011.
12. Васюк Ю.А., Иванова С.В., Школьник Е.Л. и др. Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике. Кардиоваскулярная терапия и профилактика. 2016;15(2):4-19. doi:10.15829/1728-8800-2016-2-4-19.
13. Yamaguchi T, Shirai K, Nagayama D, et al. Bezafibrate ameliorates arterial stiffness assessed by cardio-ankle vascular index in hypertriglyceridemic patients with type 2 diabetes mellitus. J Atheroscler Thromb. 2019;26:659-69. doi:10.5551/jat.45799.
14. Yasuharu T, Setoh K, Kawaguchi T, et al. Nagahama study group. Brachial-ankle pulse wave velocity and cardio-ankle vascular index are ssociated with future cardiovascular events in a general population: The Nagahama study. J Clin Hypertens (Greenwich). 2021;23:1390-8. doi:10.1111/jch.14294.
15. Bergel DH. The static elastic properties of the arterial wall. J Physiol. 1961;156:445-57. doi:10.1113/jphysiol.1961.sp006686.
16. Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13:101-7. doi:10.5551/jat.13.101.
17. Hayashi K, Handa H, Nagasawa S, et al. Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech. 1980;13:175-84. doi:10.1016/0021-9290(80)90191-8.
18. Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proc Royal Soc London B Biol Sci. 1922;93:298-306. doi:10.1098/rspb.1922.0022.
19. Takahashi K, Yamamoto T, Tsuda S, et al. Coefficients in the CAVI equation and the comparison between CAVI with and without the coefficients using clinical data. J Atheroscler Thromb. 2019;26:465- 75. doi:10.5551/jat.44834.
20. Shirai K, Song M, Suzuki J, et al. Contradictory Effects of β1- and α1- Aderenergic Receptor Blockers on Cardio-Ankle Vascular Stiffness Index (CAVI). J Ateroscler Tromb. 2011;18:49-55. doi:10.5551/jat.3582.
21. Hayashi K, Yamamoto T, Takahara A, Shirai K. Clinical assessment of arterial stiffness with cardio-ankle vascular index: theory and applications. J Hypertens. 2015;33:1742-57. doi:10.1097/HJH.0000000000000651.
22. Mazzolai L, Gisela TeixidoTura G, Lanzi S, et al. ESC Scientific Document Group, 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases: Developed by the task force on the management of peripheral arterial and aortic diseases of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS), the European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN), and the European Society of Vascular Medicine (ESVM), European Heart Journal. 2024;45(36):3538-700. doi:10.1093/eurheartj/ehae179.
23. Wang H, Liu J, Zhao H, et al. Arterial stiffness evaluation by cardioankle vascular index in hypertension and diabetes mellitus subjects. J Am Soc Hypertens. 2013;7:426-31. doi:10.1016/j.jash.2013.06.003.
24. Tanaka A, Tomiyama H, Maruhashi T, et al. Physiological diagnostic criteria for vascular failure. Hypertension. 2018;72:1060-71. doi:10.1161/HYPERTENSIONAHA.118.11554.
25. Miyoshi T, Ito H, Horinaka S, et al. Protocol for evaluating the cardioankle vascular index to predict cardiovascular events in Japan: a prospective multicenter cohort study. Pulse (Basel). 2017;4(suppl 1):11-6. doi:10.1159/000448464.
26. Nagayama D, Watanabe Y, Saiki A, et al. Difference in positive relation between cardio-ankle vascular index (CAVI) and each of four blood pressure indices in real-world Japanese population. J Hum Hypertens. 2019;33:210-17. doi:10.1038/s41371-019-0167-1.
27. Yue M, Liu H, He M, et al. Gender-specific association of metabolic syndrome and its components with arterial stiffness in the general Chinese population. PLoS One. 2017;12:e0186863. doi:10.1371/journal.pone.0186863.
28. Sato Y, Nagayama D, Saiki A, et al. Cardio-ankle vascular index is independently associated with future cardiovascular events in outpatients with metabolic disorders. J Atheroscler Thromb. 2016;23:596-605. doi:10.5551/jat.31385.
29. Schillaci G, Battista F, Settimi L, et al. Cardio-ankle vascular index and subclinical heart disease. Hypertens Res. 2015;38:68-73. doi:10.1038/hr.2014.138.
30. Osawa K, Nakanishi R, Miyoshi T, et al. Correlation of arterial stiffness with left atrial volume index and left ventricular mass index in young adults: evaluation by coronary computed tomography angiography. Heart Lung Circ. 2019;28:932-8. doi:10.1016/j.hlc.2018.04.286.
31. Namba T, Masaki N, Matsuo Y, et al. Arterial stiffness is significantly associated with left ventricular diastolic dysfunction in patients with cardiovascular disease. Int Heart J. 2016;57:729-35. doi:10.1536/ihj.16-112.
32. Satirapoj B, Triwatana W, Supasyndh O. Arterial stiffness predicts rapid decline in glomerular filtration rate among patients with high cardiovascular risks. J Atheroscler Thromb. 2020;27:611-9. doi:10.5551/jat.52084.
33. Liu H, Liu J, Zhao H, Wang HBEST research group. Association of brain white matter lesions with arterial stiffness assessed by cardioankle vascular index. The Beijing Vascular Disease Evaluation STudy (BEST). Brain Imaging Behav. 2021;15:1025-32. doi:10.1007/s11682-020-00309-3.
34. Yukutake T, Yamada M, Fukutani N, et al. Arterial stiffness determined according to the Cardio-Ankle Vascular Index (CAVI) is associated with mild cognitive decline in community-dwelling elderly subjects. J Atheroscler Thromb. 2014;21:49-55. doi:10.5551/jat.19992.
35. Chung SL, Yang CC, Chen CC, et al. Coronary artery calcium score compared with cardio-ankle vascular index in the prediction of cardiovascular events in asymptomatic patients with type 2 diabetes. J Atheroscler Thromb. 2015;22:1255-65. doi:10.5551/jat.29926.
36. Ibata J, Sasaki H, Hanabusa T, et al. Increased arterial stiffness is closely associated with hyperglycemia and improved by glycemic control in diabetic patients. J Diabetes Investig. 2013;4:82-7.
37. Saiki А, Ohira M, Yamaguchi T, et al. New Horizons of Arterial Stiffness Developed Using Cardio-Ankle Vascular Index (CAVI) J Atheroscler Thromb. 2020;27(8):732-48. doi:10.5551/jat.RV17043.
38. Otsuka K, Fukuda S, Shimada K, et al. Serial assessment of arterial stiffness by cardio-ankle vascular index for prediction of future cardiovascular events in patients with coronary artery disease. Hypertens Res. 2014;37:1014-20. doi:10.1038/hr.2014.116.
39. Gohbara M, Iwahashi N, Sano Y, et al. Clinical impact of the cardioankle vascular index for predicting cardiovascular events after acute coronary syndrome. Circ J. 2016;80:1420-6. doi:10.1253/circj.CJ15-1257.
40. Miyoshi T, Ito H, Horinaka S, et al. Predictive value of the cardio-ankle vascular index for cardiovascular events in patients at cardiovascular risk. J Am Heart Assoc. 2021;10(16):e020103. doi:10.1161/JAHA.120.020103.
41. Отт М.В., Сумин А.Н., Коваленко А.В. Возможности применения сердечно-лодыжечного сосудистого индекса у больных с цереброваскулярными заболеваниями. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2020;120(8-2):37-44. doi:10.17116/jnevro202012008237.
42. Труш Е.Ю., Иванова С.В., Савин А.А. и др. Жесткость артериальной стенки у больных с ишемическими нарушениями мозгового кровообращения. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2020;120(12-2):16-21. doi:10.17116/jnevro202012012216.
43. Заирова А.Р., Рогоза А.Н., Ощепкова Е.В. и др. Значение показателя артериальной жесткости "сердечно-лодыжечный сосудистый индекс — CAVI" для прогноза сердечно-сосудистых событий в популяционной выборке взрослого городского населения (по материалам исследования ЭССЕ-РФ, Томск). Кардиоваскулярная терапия и профилактика. 2021;20(5):2967. doi:10.15829/1728-8800-2021-2967.
44. Kubota Y, Maebuchi D, Takei M, et al. Cardio-ankle vascular index is a predictor of cardiovascular events. Artery Res. 2011;5:91-6. doi:10.1016/j.artres.2011.03.005.
45. Подзолков В.И., Брагина А.Е., Тарзиманова А.И. и др. Сердечно-сосудистые предикторы течения постковидного периода: результаты когортного исследования. Российский кардиологический журнал. 2024;29(3):5632. doi:10.15829/1560-4071-2024-5632. EDN: REXCGP.
46. Podzolkov V, Bragina A, Tarzimanova A, et al. Association of covid-19 and arterial stiffness assessed using cardiovascular index (CAVI). Current Hypertension Reviews. 2024;20(1):44-51. doi:10.2174/0115734021279173240110095037.
47. Matsushita K, Ding N, Kim ED, et al. Cardio-ankle vascular index and cardiovascular disease: systematic review and meta-analysis of prospective and cross-sectional studies. J Clin Hypertens (Greenwich). 2019;21:16-24. doi:10.1111/jch.13425.
48. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636-46. doi:10.1016/j.jacc.2013.09.063.
49. Евсевьева М.Е., Еремин М.В., Ростовцева М.В. и др. Фенотипы сосудистого старения по данным VaSera-скрининга у молодых людей с наличием артериальной гипертензии. Место дисплазии соединительной ткани. Артериальная гипертензия. 2021;27(2):188-205. doi:10.18705/1607-419X-2021-27-2-188-205.
50. Подзолков В.И., Брагина А.Е., Дружинина Н.А., Мохаммади Л.Н. Курение электронных сигарет (вейпинг) и маркеры поражения сосудистой стенки у лиц молодого возраста без сердечнососудистых заболеваний. Рациональная фармакотерапия в кардиологии. 2021;17(4):521-7. doi:10.20996/1819-6446-2021-08-04.
51. Евсевьева М.Е., Сергеева О.В., Русиди А.В. и др. Сосудистое старение и формирование саногенного мышления у студентов в аспекте оптимизации системы здоровьесбережения молодежи. Профилактическая медицина. 2024;27(9):75-81. doi:10.17116/profmed20242709175.
52. Евсевьева М.Е., Сергеева О.В., Русиди А.В. и др. Молодёжный "парадокс ожирения" с позиций сосудистой жёсткости, уровня артериального давления и метаболического статуса. Российский кардиологический журнал. 2024;29(5):5739. doi:10.15829/1560-4071-2024-5739. EDN: BIOOTS.
53. Climie RE, Park C, Avolio A, et al. Vascular Ageing in Youth: A Call to Action. Heart Lung Circ. 2021;30(11):1613-26. doi:10.1016/j.hlc.2021.06.516.
54. Safronova T, Kravtsova A, Vavilov S, et al. Мodel-based assessment of the reference values of CAVI in healthy Russian population and benchmarking with cavi0. American Journal of Hypertension. 2024;37(1):77-84. doi:10.1093/ajh/hpad082.
55. Евсевьева М. Е., Ерёмин М.В., Ростовцева М.В. и др. Профилактический скрининг молодёжи с позиций фенотипов сосудистого старения: роль массы тела. Рациональная Фармакотерапия в Кардиологии. 2022;18(1):42-8. doi:10.20996/1819-6446-2022-02-14.
56. Ротарь О. П., Бояринова М. А., Толкунова К.М. и др. Фенотипы сосудистого старения в российской популяции — биологические и социально-поведенческие детерминанты Кардиоваскулярная терапия и профилактика. 2021;20(5):2970. doi:10.15829/1728-8800-2021-2970.
57. Wang W, Costigliola V, Golubnitschaja O.Suboptimal Health Management in the Framework of PPP Medicine. In the collective monograph: All Around Suboptimal Health. Advanced Approaches by Predictive, Preventive and Personalised Medicine for Healthy Populations. Cham. 2024:1-7. doi:10.1007/978-3-031-46891-9_1.
58. Evsevieva ME, Sergeeva OV, Eremin MV, et al. Early vascular aging in young adults is instrumental as the screening tool to combat CVD epidemics in the population. In the collective monograph: All Around Suboptimal Health. Advanced Approaches by Predictive, Preventive and Personalised Medicine for Healthy Populations. Cham. 2024: 139-70.
59. Ротарь О.П., Толкунова К.М. Сосудистое старение в концепциях eva и supernova: непрерывный поиск повреждающих и протективных факторов Артериальная гипертензия. 2020;26(2):133-45. doi:10.18705/1607-419X-2020-26-2-133-145.
60. Laurent S, Boutouyrie P, Cunha PG, et al. Concept of Extremes in Vascular Aging. Hypertension. 2019;74(2):218-28. doi:10.1161/HYPERTENSIONAHA.119.12655.
61. Johansson M, Söderberg S, Nilsson PM, Nordendahl M.Vascular ageing in re-lation to chronological and self-perceived age in the general Swedish population. Scand Cardiovasc J. 2024;58(1): 2430078. doi:10.1080/14017431.2024.2430078.
62. Nilsson PM. Early Vascular Aging in Hypertension. Front Cardiovasc Med. 2020;7:6. doi:10.3389/fcvm.2020.00006.
63. Evsevieva M, Sergeeva O, Mazurakova A, et al. Pre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J. 2022;13(3): 351-66. doi:10.1007/s13167-022-00294-1.
64. Paneni F, Diaz Cañestro C, Libby P, et al. The Aging Cardiovas-cular System: Understanding It at the Cellular and Clinical Levels. J Am Coll Cardiol. 2017;69(15):1952-67. doi:10.1016/j.jacc.2017.01.064.
65. Kim HL, Kim SH. Pulse Wave Velocity in Atherosclerosis. Front Cardiovasc Med. 2019;6:41. doi:10.3389/fcvm.2019.00041.
66. Gobbens RJ, Luijkx KG, Wijnen-Sponselee MT, Schols JM. In search of an integral conceptual definition of frailty: opinions of experts. J Am Med Dir Assoc. 2010;11(5):338-43. doi:10.1016/j.jamda.2009.09.015.
67. Siriwardhana DD, Hardoon S, Rait G, et al. Prevalence of frailty and prefrailty among community-dwelling older adults in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Open. 2018;8(3):e018195. doi:10.1136/bmjopen-2017-018195.
68. Ткачева О.Н., Котовская Ю.В., Рунихина Н.К. и др. Клинические рекомендации "Старческая астения". Российский журнал гериатрической медицины. 2020;(1):11-46. doi:10.37586/2686-8636-1-2020-11-46.
69. Ijaz N, Buta B, Xue QL, et al. Interventions for Frailty Among Older Adults With Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2022;79(5):482-503. doi:10.1016/j.jacc.2021.11.029.
70. Mikael LR, Paiva AMG, Gomes MM, et al. Vascular Aging and Arterial Stiffness. Arq Bras Cardiol. 2017;109(3):253-8. doi:10.5935/abc.20170091.
71. Orkaby AR, Lunetta KL, Sun FJ, et al. Cross-Sectional Association of Frailty and Arterial Stiff-ness in Community-Dwelling Older Adults: The Framingham Heart Study. J Gerontol A Biol Sci Med Sci. 2019;74(3):373-9. doi:10.1093/gerona/gly134.
72. Xue Q, Qin MZ, Jia J, et al. Association between frailty and the cardio-ankle vascular index. Clin Interv Aging. 2019;14:735-42. doi:10.2147/CIA.S195109.
73. Лузина А.В., Рунихина Н.К., Ткачева О. Н., Котовская Ю.В. Оценка жесткости сосудистой стенки у пожилых пациентов с артериальной гипертонией во взаимосвязи с гериатрическими синдромами. Российский кардиологический журнал. 2021; 26(4):4187. doi:10.15829/1560-4071-2021-4187.
74. Cesari M, Landi F, Vellas B, et al. Sarcopenia and physical frail-ty: two sides of the same coin. Front Aging Neurosci. 2014;6:192. doi:10.3389/fnagi.2014.00192.
75. Sakuma K, Yamaguchi A. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2012;3(2):77-94. doi:10.1007/s13539-011-0052-4.
76. Sampaio RA, Sewo Sampaio PY, Yamada M, et al. Arterial stiffness is associated with low skeletal muscle mass in Japanese communitydwelling older adults. Geriatr Gerontol Int. 2014;14 Suppl 1:109-14. doi:10.1111/ggi.12206.
77. Rong YD, Bian AL, Hu HY, et al. A cross-sectional study of the relationships between different components of sarcopenia and brachial ankle pulse wave velocity in community-dwelling elderly. BMC Geriatr. 2020;20(1):115. doi:10.1186/s12877-020-01525-8.
78. Turusheva A, Frolova E, Kotovskaya Y, et al. Association Between Arterial Stiffness, Frailty and Fall-Related Injuries in Older Adults. Vasc Health Risk Manag. 2020;16:307-16. doi:10.2147/VHRM.S251900.
79. Kobayashi Y, Fujikawa T, Kobayashi H, et al. Relationship between Arterial Stiffness and Blood Pressure Drop During the Sit-to-stand Test in Patients with Diabetes Mellitus. J Atheroscler Thromb. 2017;24(2):147-56. doi:10.5551/jat.34645.
80. Dani M, Dirksen A, Taraborrelli P, et al. Orthostatic hypotension in older people: considerations, diagnosis and management. Clin Med (Lond). 2021;21(3):e275-e282. doi:10.7861/clinmed.2020-1044.
81. Pase MP, Herbert A, Grima NA, et al. Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and metaanalysis. Intern Med J. 2012;42(7):808-15. doi:10.1111/j.1445-5994.2011.02645.x.
82. Rabkin SW. Arterial stiffness: detection and consequences in cognitive impairment and dementia of the elderly. J Alzheimers Dis. 2012;32(3):541-9. doi:10.3233/JAD-2012-120757.
83. Bakali M, Ward TC, Daynes E, et al. Effect of aerobic exercise training on pulse wave velocity in adults with and without long-term conditions: a systematic review and meta-analysis. Open Heart. 2023;10(2):e002384. doi:10.1136/openhrt-2023-002384.
84. Jennings A, Berendsen AM, de Groot LCPGM, et al. MediterraneanStyle Diet Improves Systolic Blood Pressure and Arterial Stiffness in Older Adults. Hypertension. 2019;73(3):578-86. doi:10.1161/HYPERTENSIONAHA.118.12259.
85. Ngene NC, Moodley J. Physiology of blood pressure relevant to managing hypertension in pregnancy. J Matern Fetal Neonatal Med. 2019;32(8):1368-77. doi:10.1080/14767058.2017.1404569.
86. Hale SA, Badger GJ, McBride C, et al. Prepregnancy Vascular Dysfunction in Women who Subsequently Develop Hypertension During Pregnancy. Pregnancy Hypertens. 2013;3(2):140-5. doi:10.1016/j.preghy.2013.01.006.
87. Benagiano M, Mancuso S, Brosens JJ, Benagiano G. Long-Term Consequences of Placental Vascular Pathology on the Maternal and Offspring Cardiovascular Systems. Biomolecules. 2021; 11(11):1625. doi:10.3390/biom11111625.
88. Staff AC, Dechend R, Redman CW. Review: Preeclampsia, acute atherosis of the spiral arteries and future cardiovascular disease: two new hypotheses. Placenta. 2013;34 Suppl:S73-8. doi:10.1016/j.placenta.2012.11.022.
89. Orabona R, Sciatti E, Vizzardi E, et al. Endothelial dysfunction and vascular stiffness in women with previous pregnancy complicated by early or late pre-eclampsia. Ultrasound Obstet Gynecol. 2017;49(1):116-23. doi:10.1002/uog.15893.
90. Osman MW, Nath M, Breslin E, et al. Association between arterial stiffness and wave reflection with subsequent development of placental-mediated diseases during pregnancy: findings of a systematic review and meta-analysis. J Hypertens. 2018; 36(5):1005-14. doi:10.1097/HJH.0000000000001664.
91. Perry H, Gutierrez J, Binder J, et al. Maternal arterial stiffness in hypertensive pregnancies with and without small-for-gestationalage neonate. Ultrasound Obstet Gynecol. 2020;56(1):44-50. doi:10.1002/uog.21893.
92. Rueangjaroen P, Luewan S, Phrommintikul A, et al. The cardioankle vascular index as a predictor of adverse pregnancy outcomes. J Hypertens. 2021;39(10):2082-91. doi:10.1097/HJH.0000000000002907.
93. Savvidou MD, Anderson JM, Kaihura C, Nicolaides KH. Maternal arterial stiffness in pregnancies complicated by gestational and type 2 diabetes mellitus. Am J Obstet Gynecol. 2010;203(3):274.e1-7. doi:10.1016/j.ajog.2010.06.021.
94. Osman MW, Nath M, Khalil A, et al. Longitudinal study to assess changes in arterial stiffness and cardiac output parameters among low-risk pregnant women. Pregnancy Hypertens. 2017;10:256-61. doi:10.1016/j.preghy.2017.10.007.
95. Poolsin T, Sirichotiyakul S, Luewan S, et al. Reference-range of arterial stiffness by cardio-ankle vascular index in normal pregnancy. Pregnancy Hypertens. 2023;34:138-45. doi:10.1016/j.preghy.2023.10.012.
96. Anness AR, Nath M, Melhuish K, et al. Arterial stiffness throughout pregnancy: Arteriograph device-specific reference ranges based on a low-risk population. J Hypertens. 2022;40(5):870-7. doi:10.1097/HJH.0000000000003086.
97. Foo FL, McEniery CM, Lees C, Khalil A; International Working Group on Maternal Hemodynamics. Assessment of arterial function in pregnancy: recommendations of the International Working Group on Maternal Hemodynamics. Ultrasound Obstet Gynecol. 2017;50(3):324-31. doi:10.1002/uog.17565.
98. Saravanan CR, Chowdhury SR, Inban P, et al. Predictive significance of cardio ankle vascular index for the assessment of cardiovascular risk in hypertensive patients: A systematic review. J Clin Hypertens (Greenwich). 2024;26(9):1005-14. doi:10.1111/jch.14878.
99. Namugowa A, Iputo J, Wandabwa J, et al. Comparison of arterial stiffness in preeclamptic and normotensive pregnant women from a semi-rural region of South Africa. Clin Exp Hypertens. 2017;39(3):277-83. doi:10.1080/10641963.2016.1254227.
100. Torrado J, Farro I, Zocalo Y, et al. Preeclampsia is associated with increased central aortic pressure, elastic arteries stiffness and wave reflections, and resting and Recruitable endothelial dysfunction. Int J Hypertens. 2015;2015:720683. doi:10.1155/2015/720683.
101. Чулков В.С., Романюго Г.Д., Тарасова О.А. и др. Возможности профилактики кардиометаболических заболеваний у женщин с неблагоприятными исходами беременности в анамнезе. Профилактическая медицина. 2024;27(3):98-103. doi:10.17116/profmed20242703198.
102. Suvakov S, Bonner E, Nikolic V, et al. Overlapping pathogenic signalling pathways and biomarkers in preeclampsia and cardiovascular disease. Pregnancy Hypertens. 2020;20:131-6. doi:10.1016/j.preghy.2020.03.011.
103. Weissgerber TL, Milic NM, Milin-Lazovic JS, Garovic VD. Impaired Flow-Mediated Dilation Before, During, and After Preeclampsia: A Systematic Review and Meta-Analysis. Hypertension. 2016; 67(2):415-23. doi:10.1161/HYPERTENSIONAHA.115.06554.
104. Pàez O, Alfie J, Gorosito M, et al. Parallel decrease in arterial distensibility and in endothelium-dependent dilatation in young women with a history of pre-eclampsia. Clin Exp Hypertens. 2009;31(7):544-52. doi:10.3109/10641960902890176.
105. Greve SV, Blicher MK, Blyme A, et al. Association between albuminuria, atherosclerotic plaques, elevated pulse wave velocity, age, risk category and prognosis in apparently healthy individuals. J.Hypertens. 2014;32:1034-41. doi:10.1097/HJH.0000000000000147.
106. Oyama-Kato M, Ohmichi M, Takahashi K, et al. Change in pulse wave velocity throughout normal pregnancy and its value in predicting pregnancy-induced hypertension: a longitudinal study. Am J Obstet Gynecol. 2006;195(2):464-9. doi:10.1016/j.ajog.2006.01.104.
107. Robb AO, Mills NL, Din JN, et al. Influence of the menstrual cycle, pregnancy, and preeclampsia on arterial stiffness. Hypertension. 2009;53(6):952-8. doi:10.1161/HYPERTENSIONAHA.109.130898.
108. Christensen M, Kronborg CS, Eldrup N, et al. Preeclampsia and cardiovascular disease risk assessment — do arterial stiffness and atherosclerosis uncover increased risk ten years after delivery? Pregnancy Hypertens. 2016;6(2):110-4. doi:10.1016/j.preghy.2016.04.001.
109. Долгушина В.Ф., Сюндюкова Е.Г., Чулков В.С. и др. Состояние системной и плацентарной гемодинамики при преэклампсии. Акушерство и гинекология. 2024;(9):63-72. doi:10.18565/aig.2024.109.
110. Benschop L, Schelling SJ, Duvekot JJ, Roeters van Lennep JE. Cardiovascular health and vascular age after severe preeclampsia: A cohort study. Atherosclerosis. 2020;(292):136-42. doi:10.1016/j.atherosclerosis.2019.11.023.
111. Werlang A. The EVA Study: Early Vascular Aging in Women With History of Preeclampsia. Journal of the American Heart Association. 2023;12(8):e028116. doi:10.1161/JAHA.122.028116.
112. Kirollos S, Skilton M, Patel S, Arnott C. A Systematic Review of Vascular Structure and Function in Pre-eclampsia: Non-invasive Assessment and Mechanistic Links. Front Cardiovasc Med. 2019;6:166. doi:10.3389/fcvm.2019.00166.
113. Kim S, Lim HJ, Kim JR, et al. Longitudinal change in arterial stiffness after delivery in women with preeclampsia and normotension: a prospective cohort study. BMC Pregnancy Childbirth. 2020;20(1):685. doi:10.1186/s12884-020-03374-0.
114. Рябикина М.Г., Долгушина В.Ф., Сюндюкова Е.Г. и др. Артериальная жесткость и сосудорасширяющий резерв плечевой артерии при преэклампсии. Медицинская наука и образование Урала. 2024;25(3(119)):49- 55. doi:10.36361/18148999_2024_25_3_49.
115. Nagayama D, Endo K, Ohira M, et al. Effects of body weight reduction on cardio-ankle vascular index (CAVI). Obes Res Clin Pract. 2013;7(2):e139-e145. doi:10.1016/j.orcp.2011.08.154.
116. Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100(5):1230-9. doi:10.1172/JCI119636.
117. Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Physiol Regul Integr Comp Physiol. 2018;314(3):R387-R398. doi:10.1152/ajpregu.00235.2016.
118. Balletshofer BM, Rittig K, Enderle MD, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101(15):1780-4. doi:10.1161/01.cir.101.15.1780.
119. Saiki A, Oyama T, Endo K, et al. Preheparin serum lipoprotein lipase mass might be a biomarker of metabolic syn-drome. Diabetes Res Clin Pract. 2007;76(1):93-101. doi:10.1016/j.diabres.2006.08.004.
120. Topouchian J, Labat C, Gautier S, et al. Effects of metabolic syndrome on arterial function in different age groups: the Advanced Approach to Arterial Stiffness study. J Hypertens. 2018;36(4):824- 33. doi:10.1097/HJH.0000000000001631.
121. Gomez-Sanchez L, Garcia-Ortiz L, Patino-Alonso MC, et al.; MARK Group. The Association Between the Cardio-ankle Vascular Index and Other Parameters of Vascular Structure and Function in Caucasian Adults: MARK Study. J Atheroscler Thromb. 2015; 22(9):901-11. doi:10.5551/jat.28035.
122. Seals DR, Desouza CA, Donato AJ, Tanaka H. Habitual exercise and arterial aging. J.Appl. Physiol. 2008;1985(105):1323-32. doi:10.1152/japplphysiol.90553.2008.
123. Liu H, Zhang X, Feng X, et al. Effects of metabolic syndrome on cardio-ankle vascular index in middle-aged and elderly Chinese. Metab Syndr Relat Disord. 2011;9(2):105-10.
124. Bäck M, Topouchian J, Labat C, et al. Cardio-ankle vascular index for predicting cardiovascular morbimortality and determinants for its progression in the prospective advanced approach to arterial stiffness (TRIPLE-A-Stiffness) study. EBioMedicine. 2024; 103:105107. doi:10.1016/j.ebiom.2024.105107.
125. Wildman RP, Mackey RH, Bostom A, et al. Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension. 2003;42:468-73. doi:10.1161/01.HYP.0000090360.78539.CD.
126. Safar ME, Czernichow S, Blacher J. Obesity, arterial stiffness, and cardiovascular risk. J. Am. Soc. Nephrol. 2006;17:S109-S111. doi:10.1681/ASN.2005121321.
127. Recio-Rodriguez JI, Gómez-Marcos MA, Patino-Alonso MC, et al. Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hy-pertensive. BMC Cardiovasc. Disord. 2012;12:3. doi:10.1186/1471-2261-12-3.
128. Weisbrod RM, Shiang T, Al Sayah L, et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension. 2013;62:1105-10. doi:10.1161/HYPERTENSIONAHA.113.01744.
129. Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics. 2015;33(7):673-89. doi:10.1007/s40273-014-0243-x.
130. Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014;43(1):1-23. doi:10.1016/j.ecl.2013.09.009.
131. Hemati AY, Rahimi IM, Zilaei BS, et al. Inflammatory immune system response to short term altitude exposure and recreational physical activity. International Journal of Sport Studies. 2014;4(11):1383-7. doi:10.13140/RG.2.1.5072.8807.
132. Balestra C, Lambrechts K, Mrakic-Sposta S, et al. Hypoxic and Hyperoxic Breathing as a Complement to Low-Intensity Physical Exercise Programs: A Proof-of-Principle Study. Int J Mol Sci. 2021;22(17):9600. doi:10.3390/ijms22179600.
133. Urdampilleta A, González-Muniesa P, Portillo MP, Martínez JA. Usefulness of combin-ing intermittent hypoxia and physical exercise in the treatment of obesity. J Physiol Biochem. 2012;68(2):289-304. doi:10.1007/s13105-011-0115-1.
134. Montero D, Lundby C. Effects of Exercise Training in Hypoxia Versus Normoxia on Vascular Health. Sports Med. 2016;46(11):1725-36. doi:10.1007/s40279-016-0570-5.
135. De Groote E, Deldicque L. Is Physical Exercise in Hypoxia an Interesting Strategy to Prevent the Development of Type 2 Diabetes? A Narrative Review. Diabetes Metab Syndr Obes. 2021;14:3603-16. doi:10.2147/DMSO.S322249.
136. Sohee S, Toshio M, Wi-young S. Influences of short-term normobaric hypoxic training on metabolic syndrome-related markers in overweight and normal-weight men. Normobaric Hypoxic Training on Metabolic Syndrome. Journal of Men's Health. 2017;14(1);44-52. doi:10.22347/1875-6859.14.1.5.
137. Serebrovska TV, Portnychenko AG, Portnichenko VI, et al. Effects of intermittent hypoxia training on leukocyte pyruvate dehydrogenase kinase 1 (PDK-1) mRNA expression and blood insulin level in pre-diabetes patients. Eur J Appl Physiol. 2019;119(3):813-23. doi:10.1007/s00421-019-04072-2.
138. Lyamina NP, Lyamina SV, Senchiknin VN, et al. Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. J Hypertens. 2011;29(11):2265-72. doi:10.1097/HJH.0b013e32834b5846.
139. Bestavashvili A, Glazachev O, Bestavashvili A, et al. Intermittent Hypoxic-Hyperoxic Exposures Effects in Patients with Metabolic Syndrome: Correction of Cardiovascular and Metabolic Profile. Biomedicines. 2022;10(3):566. doi:10.3390/biomedicines10030566.
140. Koskinas KC, Van Craenenbroeck EM, Antoniades C, et al. Obesity and cardiovascular disease: an ESC clinical consensus statement. Eur J Prev Cardiol. 2025;32(3):184-220. doi:10.1093/eurjpc/zwae279. Erratum in: Eur J Prev Cardiol. 2025;32(6):511. doi:10.1093/eurjpc/zwae398.
141. Korakas E, Kountouri A, Pavlidis G, et al. Semaglutide Concurrently Improves Vascular and Liver Indices in Patients With Type 2 Diabetes and Fatty Liver Disease, Journal of the Endocrine Society. 2024;8(8):bvae122. doi:10.1210/jendso/bvae122.
142. Милютина М.Ю., Макарова Е.В., Меньков Н.В. и др. Влияние курения на жесткость сосудистой стенки у мужчин трудоспособного возраста по данным объемной сфигмографии. Клиническая медицина. 2021;99(1):53-7. doi:10.30629/0023-2149-2021-99-1-53-57/.
143. Гусаковская Л.И., Зиборева К.А., Муссаева А.В. и др. Влияние курения на показатели локальной и региональной сосудистой жесткости у здоровых молодых лиц. Вестник Пензенского государственного университета. 2015;2(10):89-94.
144. Hennrikus D, Joseph AM, Lando HA, et al. Effectiveness of a smoking cessation program for peripheral artery disease patients: a randomized controlled trial. J.Am. Coll. Cardiol. 2010;56(25):2105- 12. doi:10.1016/j.jacc.2010.07.031.
145. Винокурова И. Г., Давидович И. М., Воронова Т.А. Влияние артериальной гипертензии и курения на показатели жесткости сосудистой стенки у женщин репродуктивного возраста. Проблемы женского здоровья. 2011;6(4):62.
146. Kubozono T, Miyata M, Ueyama K, et al. Acute and chronic effects of smoking on arterial stiffness. Circ J. 2011;75:698-702. doi:10.1253/circj.cj-10-0552.
147. Miech R, Johnston L, O'Malley PM, et al. Trends in 534 Adolescent Vaping, 2017-2019. N Engl J Med. 2019;381(15):1490-1. doi:10.1056/NEJMc1910739.
148. Пушкина Я.А., Сычев И.В., Сергутова Н.П., Гончарова Л.Н. Влияние курения кальяна на жесткость сосудистой стенки у лиц молодого возраста по данным объемной сфигмографии. Регионарное кровообращение и микроциркуляция. 2024;23(3):43-9. doi:10.24884/1682-6655-2024-23-3-43-49.
149. Стародубова А.В., Чазова И.Е., Тутельян В.А. и др. Евразийские клинические рекомендации по питанию при сердечно-сосудистых заболеваниях (2024). Евразийский Кардиологический Журнал. 2024;(4):6-67. doi:10.38109/2225-1685-2024-4-6-66.
150. Katsiki N, Filippatos T, Vlachopoulos C, et al. Executive summary of the Hellenic Atherosclerosis Society guidelines for the diagnosis and treatment of dyslipidemias — 2023. Atheroscler Plus. 2024;55:74- 92. doi:10.1016/j.athplu.2024.01.004.
151. Cobos-Palacios L, Ruiz-Moreno, MI, Muñoz-Ubeda M, et al. A Healthy Lifestyle Is Associated with Lower Arterial Stiffness in a Metabolically Healthy Elderly Population with Overweight or Obesity. J.Hypertens. 2022;40:1808-14. doi:10.1097/HJH.0000000000003227.
152. Tyrovola D, Soulaidopoulos S, Tsioufis C, Lazaros G.The Role of Nutrition in Cardiovascular Disease: Current Concepts and Trends. Nutrients. 2023;15:1064. doi:10.3390/nu15051064.
153. Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation. 2021;144:e472-e487. doi:10.1161/CIR.0000000000001031.
154. Wang S, Melnyk JP, Tsao R, Marcone MF. How Natural Dietary Antioxidants in Fruits, Vegetables and Legumes Promote Vascular Health. Food Res. Int. 2011;44:14-22. doi:10.1016/J.FOODRES.2010.09.028.
155. Monsalve B, Concha-Meyer A, Palomo I, Fuentes E. Mechanisms of Endothelial Protection by Natural Bioactive Compounds from Fruit and Vegetables. An.Acad. Bras. Cienc. 2017;89:615-33. doi:10.1590/0001-3765201720160509.
156. Zhan, J, Liu Y-J, Cai L-B, et al. Fruit and Vegetable Consumption and Risk of Cardiovascular Disease: A Meta-Analysis o Prospective Cohort Studies. Crit. Rev. Food Sci. Nutr. 2017;57:1650-63. doi:10.1080/10408398.2015.1008980.
157. Aune D, Giovannucci E, Boffetta P, et al. Fruit and Vegetable Intake and the Risk of Cardiovascular Disease, Total Cancer and All-Cause Mortality — A Systematic Review and Dose-Response MetaAnalysis of Prospective Studies. Int. J.Epidemiol. 2017;46:1029-56. doi:10.1093/ije/dyw319.
158. Blanch N, Clifton PM, Keogh JB. A Systematic Review of Vascular and Endothelial Function: Effects of Fruit, Vegetable and Potassium Intake. Nutr. Metab. Cardiovasc. Dis. 2015;25:253-66. doi:10.1016/j.numecd.2014.10.001.
159. Aatola H, Koivistoinen T, Hutri-Kähönen N, et al. Lifetime Fruit and Vegetable Consumption and Arterial Pulse Wave Velocity in Adulthood. Circulation. 2010;122:2521-8. doi:10.1161/CIRCULATIONAHA.110.969279.
160. Liu S, Liu FC, Li JX, et al. Association between Fruit and Vegetable Intake and Arterial Stiffness: The China-PAR Project. Biomed. Environ. Sci. 2023;36:1113-22. doi:10.3967/bes2023.143.
161. Ribeiro A, Mill J, Cade N, et al. Associations of Dairy Intake with Arterial Stiffness in Brazilian Adults: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients. 2018;10:701. doi:10.3390/nu10060701.
162. Diez-Fernández A, Álvarez-Bueno C, Martínez-Vizcaíno V, et al. Total Dairy, Cheese and Milk Intake and Arterial Stiffness: A Systematic Review and Meta-Analysis of Cross-Sectional Studies. Nutrients. 2019;11:741. doi:10.3390/nu11040741.
163. Kasliwal RR, Bansal M, Mehrotra, R, et al. Effect of Pistachio Nut Consumption on Endothelial Function and Arterial Stiffness. Nutrition. 2015;31:678-85. doi:10.1016/j.nut.2014.10.019.
164. Neale EP, Tapsell LC, Guan V, Batterham MJ. The Effect of Nut Consumption on Markers of Inflammation and Endothelial Function: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ Open. 2017;7:e016863. doi:10.1136/bmjopen-2017-016863.
165. Xiao Y, Huang W, Peng C, et al. Effect of Nut Consumption on Vascular Endothelial Function: A Systematic Review and MetaAnalysis of Randomized Controlled Trials. Clin. Nutr. 2018;37:831-9. doi:10.1016/j.clnu.2017.04.011.
166. Shi W, Huang X, Schooling CM, Zhao JV. Red Meat Consumption, Cardiovascu-ar Diseases, and Diabetes: A Systematic Review and Meta-Analysis. Eur. Heart J. 2023;44:2626-35. doi:10.1093/eurheartj/ehad336.
167. Zhong VW, Van Horn L, Greenland P, et al. Associations of Processed Meat, Unprocessed Red Meat, Poultry, or Fish Intake With Incident Cardiovascular Disease and All-Cause Mortality. JAMA Intern. Med. 2020;180;503-12. doi:10.1001/jamainternmed.2019.6969.
168. Wang M, Wang Z, Lee Y, et al. Dietary Meat, Trimethylamine N-Oxide-Related Metabolites, and Incident Cardiovascular Disease Among Older Adults: The Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 2022;42:E273-E288. doi:10.1161/ATVBAHA.121.316533.
169. Pierce GL, Roy SJ, Gimblet CJ. The Gut-Arterial Stiffness Axis: Is TMAO a Nov-el Target to Prevent Age-Related Aortic Stiffening? Hypertension. 2021;78:512-5. doi:10.1161/HYPERTENSIONAHA.121.17487.
170. Azad BJ, Heshmati J, Daneshzad E, Palmowski A. Effects of Coffee Consumption on Arterial Stiffness and Endothelial Function: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Crit. Rev. Food. Sci. Nutr. 2021;61:1013-26. doi:10.1080/10408398.2020.1750343.
171. Vlachopoulos CV, Vyssoulis GG, Alexopoulos NA, et al. Effect of Chronic Coffee Consumption on Aortic Stiffness and Wave Reflections in Hypertensive Patients. Eur. J. Clin. Nutr. 2007;61:796- 802. doi:10.1038/sj.ejcn.1602577.
172. Noguchi K, Matsuzaki T, Sakanashi M, et al. Effect of Caffeine Contained in a Cup of Coffee on Microvascular Function in Healthy Subjects. J. Pharmacol. Sci. 2015;127:217-22. doi:10.1016/j.jphs.2015.01.003.
173. Buscemi S, Verga S, Batsis JA, et al. Acute Effects of Coffee on Endothelial Function in Healthy Subjects. Eur. J.Clin. Nutr. 2010; 64:483-9.
174. Hwang C-L, Muchira J, Hibner BA, et al. Alcohol Consumption: A New Risk Factor for Arterial Stiffness? Cardiovasc. Toxicol. 2022;22:236-45.
175. Gonzalez-Sanchez J, Garcia-Ortiz L, Rodriguez-Sanchez E, et al. The Relationship Between Alcohol Consumption With Vascular Structure and Arterial Stiffness in the Spanish Population: EVA Study. Alcohol Clin. Exp. Res. 2020;44:1816-24.
176. Sasaki S, Yoshioka E, Saijo Y, et al. Relation between Alcohol Consumption and Arterial Stiffness: A Cross-Sectional Study of Middle-Aged Japanese Women and Men. Alcohol. 2013;47:643-9.
177. The Lancet Rheumatology. Alcohol and health: all, none, or somewhere in-between? Lancet Rheumatol. 2023;5(4):e167. doi:10.1016/S2665-9913(23)00073-5.
178. Kapil V, Milsom AB, Okorie M, et al. Inorganic Nitrate Supplementation Lowers Blood Pressure in Humans. Hypertension. 2010;56:274-81.
179. Bahrami LS, Arabi SM, Feizy Z, Rezvani R. The Effect of Beetroot Inorganic Nitrate Supplementation on Cardiovascular Risk Factors: A Systematic Review and Meta-Regression of Randomized Controlled Trials. Nitric Oxide. 2021;115:8-22.
180. Alasmari AM, Alsulayyim AS, Alghamdi SM, et al. Oral Nitrate Supplementation Improves Cardiovascular Risk Markers in COPD: ON-BC, a Randomised Controlled Trial. Eur. Respir. J. 2024; 63:2202353.
181. Shannon OM, Clifford T, Seals DR, et al. Nitric Oxide, Aging and Aerobic Exercise: Sedentary Individuals to Master’s Athletes. Nitric Oxide. 2022;125-6:31-9.
182. Lau CWZ, Hamers AJP, Rathod KS, et al. Randomised, DoubleBlind, Placebo-Controlled Clinical Trial Investigating the Effects of Inorganic Nitrate in Hypertension Induced Target Organ Damage: Protocol of the NITRATE-TOD Study in the UK. BMJ Open. 2020; 10:e034399.
183. Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, Flavonoid-Rich Foods, and Cardiovascular Risk: A Meta-Analysis of Randomized Controlled Trials. Am.J. Clin. Nutr. 2008;88:38-50.
184. Heiss C, Sansone R, Karimi H, et al. Impact of Cocoa Flavanol Intake on Age-Dependent Vascular Stiffness in Healthy Men: A Randomized, Con-trolled, Double-Masked Trial. Age. 2015;37:56.
185. Sansone R, Rodriguez-Mateos A, Heuel J, et al. Cocoa Flavanol Intake Improves Endothelial Function and Framingham Risk Score in Healthy Men and Women: A Randomised, Controlled, DoubleMasked Trial: The Flaviola Health Study. Br. J. Nutr. 2015;114: 1246-55.
186. Gröne M, Sansone R, Höffken P, et al. Cocoa Flavanols Improve Endothelial Functional Integrity in Healthy Young and Elderly Subjects. J. Agric. Food Chem. 2020;68:1871-6.
187. Garcia-Yu IA, Garcia-Ortiz L, Gomez-Marcos MA, et al. Effects of Cocoa-Rich Chocolate on Blood Pressure, Cardiovascular Risk Factors, and Arterial Stiffness in Postmenopausal Women: A Randomized Clinical Trial. Nutrients. 2020;12(6):1758. doi:10.3390/nu12061758.
188. Gao L, Mao Q, Cao J, et al. Effects of Coenzyme Q10 on Vascular Endothelial Function in Humans: A Meta-Analysis of Randomized Controlled Trials. Atherosclerosis. 2012;221:311-6.
189. Kawashima C, Matsuzawa Y, Konishi M, et al. Ubiquinol Improves Endothelial Function in Patients with Heart Failure with Reduced Ejection Fraction: A Single-Center, Randomized Double-Blind Placebo-Controlled Crossover Pilot Study. Am.J. Cardiovasc. Drugs. 2020;20:363-72.
190. Gao J, Xu Y, Jia H, et al. Associations of Coenzyme Q10 with Endothelial Function in Hemodialysis Patients. Nephrology. 2021;26: 54-61.
191. Alidadi M, Sahebkar A, Eslami S, et al. The Effect of Curcumin Supplementation on Pulse Wave Velocity in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv. Exp. Med. Biol. 2021;1308:1-11.
192. Dehzad MJ, Ghalandari H, Askarpour M. Curcumin/Turmeric Supplementation Could Improve Blood Pressure and Endothelial Function: A Grade-Assessed Systematic Re-view and Dose-Response Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. ES-PEN. 2024;59:194-207.
193. Imamura H, Yamaguchi T, Nagayama D, et al. Resveratrol Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Patients With Type 2 Diabetes Mellitus. Int Heart J. 2017;58(4):577- 83. doi:10.1536/ihj.16-373.
194. Akbari M, Tamtaji OR, Lankarani KB, et al. The Effects of Resveratrol Supplementation on Endothelial Function and Blood Pressures Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press. Cardiovasc. Prev. 2019;26:305-19. doi:10.1007/s40292-019-00324-6.
195. Mohammadipoor N, Shafiee F, Rostami A, et al. Resveratrol Supplementation Efficiently Improves Endothelial Health: A Systematic Review and Meta-Analysis of Ran-domized Controlled Trials. Phytother. Res. 2022;36:3529-39. doi:10.1002/ptr.7562.
196. Lee YS, Park JW, Joo M, et al. Effects of Omega-3 Fat-ty Acids on Flow-Mediated Dilatation and Carotid Intima Media Thickness: A Meta-Analysis. Curr. Atheroscler. Rep. 2023;25:629-41. doi:10.1007/s11883-023-01137-8.
197. Meital LT, Schulze K, Magee R, et al. Long Chain Omega-3 Polyunsaturated Fatty Acids Improve Vascular Stiffness in Abdominal Aortic Aneurysm: A Randomized Controlled Trial. Nutrients. 2020; 13:138. doi:10.3390/nu13010138.
198. Maruyama K, Khairunnisa S, Saito I, et al. Association of Fish and Omega-3 Fatty Acid Intake with Carotid Intima-Media Thickness in Middle-Aged to Elderly Japanese Men and Women: The Toon Health Study. Nutrients. 2022;14:3644. doi:10.3390/nu14173644.
199. Wang Q, Liang X, Wang L, et al. Effect of Omega-3 Fatty Acids Supplementation on Endothelial Function: A Meta-Analysis of Ran-domized Controlled Trials. Atherosclerosis. 2012;221:536-43. doi:10.1016/j.atherosclerosis.2012.01.006.
200. Swart R, Schutte AE, van Rooyen JM, Mels CMC. Selenium and Large Artery Structure and Function: A 10-Year Prospective Study. Eur. J.Nutr. 2019;58:3313-23. doi:10.1007/s00394-018-1875-y.
201. Joris PJ, Plat J, Bakker SJL, Mensink RP. Long-Term Magnesium Supplementation Improves Arterial Stiffness in Overweight and Obese Adults: Results of a Randomized, Double-Blind, PlaceboControlled Intervention Trial. Am.J. Clin. Nutr. 2016;103:1260-6. doi:10.3945/ajcn.116.131466.
202. Schutten JC, Joris PJ, Groendijk I, et al. Effects of Magnesium Citrate, Magnesium Oxide, and Magnesium Sulfate Supplementation on Arterial Stiffness: A Randomized, Double-Blind, PlaceboControlled Intervention Trial. J.Am. Heart Assoc. 2022;11:e021783. doi:10.1161/JAHA.121.021783.
203. Marques BCAA, Klein MRST, da Cunha MR, et al. Effects of Oral Magnesium Supplementation on Vascular Function: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press. Cardiovasc. Prev. 2020;27:19-28. doi:10.1007/s40292-019-00355-z.
204. Ashor AW, Siervo M, Lara J, et al. Effect of Vitamin C and Vitamin E Supplementation on Endothelial Function: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Br.J. Nutr. 2015;113:1182-94. doi:10.1017/S0007114515000227.
205. Kwok T, Chook P, Qiao M, et al. Vitamin B-12 Supplementation Improves Arterial Function in Vegetarians with Subnormal Vitamin B-12 Status. J.Nutr. Health Aging. 2012;16:569-73. doi:10.1007/s12603-012-0036-x.
206. Rodríguez AJ, Scott D, Srikanth V, Ebeling P. Effect of Vitamin D Supplementation on Measures of Arterial Stiffness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Endocrinol. 2016;84:645-57. doi:10.1111/cen.13031.
207. Van Dijk SC, Enneman AW, Swart KMA, et al. Effects of 2-Year Vitamin B12 and Folic Acid Supplementation in Hyperhomocysteinemic Elderly on Arterial Stiffness and Cardiovascular Outcomes within the B-PROOF Trial. J. Hypertens. 2015;33:1897-906. doi:10.1097/HJH.0000000000000647.
208. Theodoridis X, Chourdakis M, Papaemmanouil A, et al. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life (Basel). 2024;14(9):1210. doi:10.3390/life14091210.
209. Regnault V, Lacolley P, Laurent S. Arterial Stiffness: From Basic Primers to Integrative Physiology. Annu Rev Physiol. 2024;86:99-121. doi:10.1146/annurev-physiol-042022-031925.
210. Kim HL. Arterial stiffness and hypertension. Clin Hypertens. 2023;29(1):31. doi:10.1186/s40885-023-00258-1.
211. Boutouyrie P, Chowienczyk P, Humphrey JD, Mitchell GF. Arterial Stiffness and Cardiovascular Risk in Hypertension. Circ Res. 2021;128(7):864-86. doi:10.1161/CIRCRESAHA.121.318061.
212. Laurent S, Agabiti-Rosei C, Bruno RM, Rizzoni D. Microcirculation and Macrocirculation in Hypertension: A Dangerous Cross-Link? Hypertension. 2022;79(3):479-90. doi:10.1161/HYPERTENSIONAHA.121.17962.
213. Mancia G, Kreutz R, Brunström M, et al. 2023 ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023;41(12):1874-2071. doi:10.1097/HJH.0000000000003480.
214. Павлова О.С. Артериальная гипертензия: клиническое руководство. Под общ. ред. Н.П. Митьковской. Минск: Профессиональные издания, 2023. 68 с. ISBN: 978-985-7291- 37-3.
215. Кобалава Ж. Д., Конради А.О., Недогода С.В. и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(9):6117. doi:10.15829/1560-4071-2024-6117. EDN: GUEWLU.
216. Cuspidi C, Facchetti R, Gherbesi E, et al. Cardio-Ankle Vascular Index and left ventricular mass as markers of nocturnal blood pressure fall in the general population. Clin Res Cardiol. 2024. doi:10.1007/s00392-024-02485-4.
217. Wang N, Guo Y, Li X, et al. Association between Cardio-Ankle Vascular Index and Masked Uncontrolled Hypertension in Hypertensive Patients: A Cross-Sectional Study. J Healthc Eng. 2022; 2022:3167518. doi:10.1155/2022/3167518.
218. Kawabata T, Kubozono T, Ojima S, et al. Insufficient blood pressure control is independently associated with increased arterial stiffness. Hypertens Res. 2022;45(12):1861-8. doi:10.1038/s41440-022-01039-3.
219. Cuspidi C, Facchetti R, Quarti-Trevano F, et al. Cardio-Ankle Vascular Index as a Marker of Left Ventricular Hypertrophy in Treated Hypertensives: Findings From the Pamela Study. Am J Hypertens. 2024;37(6):399-406. doi:10.1093/ajh/hpae022.
220. Zhang X, Li Y, Wang X, et al. Hypertension-specific association of cardio-ankle vascular index with subclinical left ventricular function in a Chinese population: Danyang study. J Clin Hypertens (Greenwich). 2024;26(5):553-62. doi:10.1111/jch.14803.
221. Kim H, Kim HS, Yoon HJ, et al. Association of cardio-ankle vascular index with diastolic heart function in hypertensive patients. Clin Exp Hypertens. 2014;36(4):200-5. doi:10.3109/10641963.2013.804544.
222. Сумин А.Н., Щеглова А.В., Фёдорова Н.В., Артамонова Г.В. Сердечно-лодыжечный сосудистый индекс у больных артериальной гипертензией. Доктор. Ру. 2016;11(128):28-32.
223. Tavolinejad H, Erten O, Maynard H, Chirinos JA. Prognostic Value of Cardio-Ankle Vascular Index for Cardiovascular and Kidney Outcomes: Systematic Review and Meta-Analysis. JACC Adv. 2024; 3(7):101019. doi:10.1016/j.jacadv.2024.101019.
224. Miyashita Y, Saiki A, Endo K, et al. Effects of olmesartan, an angiotensin II receptor blocker, and amlodipine, a calcium channel blocker, on Cardio-Ankle Vascular Index (CAVI) in type 2 diabetic patients with hypertension. J Atheroscler Thromb. 2009;16(5):621-6. doi:10.5551/jat.497.
225. Bokuda K, Ichihara A, Sakoda M, et al. Blood pressure-independent effect of candesartan on cardio-ankle vascular index in hypertensive patients with metabolic syndrome. Vasc Health Risk Manag. 2010;6:571-8. doi:10.2147/vhrm.s11958.
226. Miyoshi T, Suetsuna R, Tokunaga N, et al. Effect of Azilsartan on Dayto-Day Variability in Home Blood Pressure: A Prospective Multicenter Clinical Trial. J Clin Med Res. 2017;9(7):618-23. doi:10.14740/jocmr3050w.
227. Watanabe Y, Takasugi E, Shitakura K, et al. Administration of an angiotensin-converting enzyme inhibitor improves vascular function and urinary albumin excretion in low-risk essential hypertensive patients receiving anti-hypertensive treatment with calcium channel blockers. Organ-protecting effects independent of anti-hypertensive effect. Clin Exp Hypertens. 2011;33(4):246-54. doi:10.3109/10641963.2011.583970.
228. Sasaki H, Saiki A, Endo K, et al. Protective effects of efonidipine, a T- and L-type calcium channel blocker, on renal function and arterial stiffness in type 2 diabetic patients with hypertension and nephropathy. J Atheroscler Thromb. 2009;16(5):568-75. doi:10.5551/jat.1628.
229. Kurata M, Okura T, Watanabe S, et al. Effects of amlodipine and candesartan on arterial stiffness estimated by cardio-ankle vascular index in patients with essential hypertension: A 24-week study. Curr Ther Res Clin Exp. 2008;69(5):412-22. doi:10.1016/j.curtheres.
230. Shibata T, Tsutsumi J, Hasegawa J, et al. Effects of Add-on Therapy Consisting of a Selective Mineralocorticoid Receptor Blocker on Arterial Stiffness in Patients with Uncontrolled Hypertension. Intern Med. 2015;54(13):1583-9. doi:10.2169/internalmedicine.54.3427.
231. Vasan RS, Pan S, Xanthakis V, et al. Arterial Stiffness and Long-Term Risk of Health Outcomes: The Framingham Heart Study. Hypertension. 2022;79(5):1045-56. doi:10.1161/HYPERTENSIONAHA.121.18776.
232. Vatner SF, Zhang J, Vyzas C, et al. Vascular Stiffness in Aging and Disease. Front Physiol. 2021;12:762437. doi:10.3389/fphys.2021.762437.
233. Feola M. The influence of arterial stiffness in heart failure: A clinical review. J Geriatr Cardiol. 2021;18(2):135-40. doi:10.11909/j.issn.1671-5411.2021.02.004.
234. Мкртчян В.Р., Хайкин В.Д., Гудкова А.А. и др. Склеротические изменения артерий: атеросклероз, артериосклероз. Кардиология и сердечно-сосудистая хирургия. 2022;15(3):261-9. doi:10.17116/kardio202215031261.
235. Сумин А.Н., Щеглова А.В. Оценка артериальной жесткости с помощью сердечно-лодыжечного сосудистого индекса — что мы знаем, и к чему стремимся. Рациональная Фармакотерапия в Кардиологии. 2021;17(4):619- 27. doi:10.20996/1819-6446-2021-08-09.
236. Park JB, Park HE, Choi SY, et al. Relation between cardio-ankle vascular index and coronary artery calcification or stenosis in asymptomatic subjects. J Atheroscler Thromb. 2013;20(6):557-67. doi:10.5551/jat.15149.
237. Hu H, Cui H, Han W, et al. A cutoff point for arterial stiffness using the cardio-ankle vascular index based on carotid arteriosclerosis. Hypertens Res. 2013;36(4):334-41. doi:10.1038/hr.2012.192.
238. Сумин А.Н., Осокина А.В., Щеглова А.В. и др. Показатели ЭХОКГ при различном сердечнолодыжечном сосудистом индексе у больных ИБС. Сердце. 2015;14(3):123-30.
239. Lüers C, Trippel TD, Seeländer S, et al. Arterial stiffness and elevated left ventricular filling pressure in patients at risk for the development or a previous diagnosis of HF-A subgroup analysis from the DIASTCHF study. J Am Soc Hypertens. 2017;11(5):303-13. doi:10.1016/j.jash.2017.03.006.
240. Бойцов С. А., Погосова Н.В., Аншелес А.А. и др. Кардиоваскулярная профилактика, 2022. Российские национальные рекомендации. Российский кардиологический журнал. 2023;28(5):5452. doi:10.15829/1560-4071-2023-5452.
241. Sumin AN, Shcheglova AV, Ivanov SV, Barbarash OL. Long-Term Prognosis after Coronary Artery Bypass Grafting: The Impact of Arterial Stiffness and Multifocal Atherosclerosis. J Clin Med. 2022;11(15):4585. doi:10.3390/jcm11154585.
242. Kato A, Takita T, Furuhashi M, et al. Brachial-ankle pulse wave velocity and the cardio-ankle vascular index as a predictor of cardio¬vascular outcomes in patients on regular hemodialysis. Ther Apher Dial. 2012;16(3):232-41. doi:10.1111/j.1744-9987.2012.01058.x.
243. Сумин А. Н., Щеглова А.В., Баштанова Т.Б., Барбараш О. Л. Влияние патологического сердечно-лодыжечного сосудистого индекса на годовые результаты коронарного шунтирования у больных ишемической болезнью сердца. Кардиоваскулярная терапия и профилактика. 2015;14(3):18-24. doi:10.15829/1728-8800-2015-3-18-24.
244. Saiki A, Watanabe Y, Yamaguchi T, et al. CAVI-Lowering Effect of Pitavastatin May Be Involved in the Prevention of Cardiovascular Disease: Subgroup Analysis of the TOHO-LIP. J Atheroscler Thromb. 2021;28(10):1083-94. doi:10.5551/jat.60343.
245. Sumin AN, Shcheglova AV, Barbarash OL. Dynamics of the State of Arterial Stiffness as a Possible Pathophysiological Factor of Unfavorable Long-Term Prognosis in Patients after Coronary Artery Bypass Grafting. Biomedicines. 2024;12(5):1018. doi:10.3390/biomedicines12051018.
246. Wooten SV, Stray-Gundersen S, Tanaka H. Hemodynamic and Pressor Responses to Combination of Yoga and Blood Flow Restriction. Int J Sports Med. 2020;41(11):759-65. doi:10.1055/a-1171-1620.
247. Kobayashi R, Kasahara Y, Ikeo T, et al. Effects of different intensities and durations of aerobic exercise training on arterial stiffness. J Phys Ther Sci. 2020;32(2):104-9. doi:10.1589/jpts.32.104.
248. Mori K, Nomura T, Akezaki Y, et al. Impact of Tai Chi Yuttari-exercise on arteriosclerosis and physical function in older people. Arch Gerontol Geriatr. 2020;87:104011. doi:10.1016/j.archger.2020.104011.
249. Li A, Yan J, Zhao Y, et al. Vascular Aging: Assessment and Intervention. Clin Interv Aging. 2023;18:1373-95. doi:10.2147/CIA.S423373.
250. Laurent S, Chatellier G, Azizi M, et al. SPARTE Study: Normalization of Arterial Stiffness and Cardiovascular Events in Patients With Hypertension at Medium to Very High Risk. Hypertension. 2021;78(4):983-95. doi:10.1161/HYPERTENSIONAHA.121.17579.
251. Schettini IVG, Rios DRA, Figueiredo RC. Effect of Different Classes of Antihypertensive Drugs on Arterial Stiffness. Curr Hypertens Rep. 2023;25(5):61-70. doi:10.1007/s11906-023-01238-4.
252. Shimizu N, Ban N, Watanabe Y, et al. The Elevation of Cardio-Ankle Vascular Index in a Patient With Malignant Lymphoma Treated With a Combination Therapy of Rituximab and Cyclophosphamide, Doxorubicin, Vincristine, and Prednisolone. J Clin Med Res. 2017;9(8):729-32. doi:10.14740/jocmr3071w.
253. Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and 313 updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272-87.
254. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22:1342-56. doi:10.1002/ejhf.1858.
255. Поляков Д.С., Фомин И.В., Беленков Ю.Н. и др. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА–ХСН. Кардиология. 2021;61(4):4-14. doi:10.18087/cardio.2021.4.n1628.
256. Shahim B, Kapelios CJ, Savarese G, Lund LH. Global Public Health Burden of Heart Failure: An Updated Review. Card Fail Rev. 2023;9:e11. doi:10.15420/cfr.2023.05.
257. Franssen C, Chen S, Hamdani N, Paulus WJ. From comorbidities to heart failure with preserved9 ejection fraction: a story of oxidative stress. 2016;102:320-30.
258. Shim CY, Hong GR, Ha JW. Ventricular stiffness and ventriculararterial coupling in heart failure: what is it, how to assess, and why? Heart Fail Clin. 2019;15:267-74.
259. Weber T. The role of arterial stiffness and central hemodynamics in heart failure. Int J Heart Fail. 2020;2:209-30.
260. Tsao CW, Lyass A, Larson MG, et al. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4(11):e002189.
261. Spronck B, Lee J, Oldland G, et al. P152 Prediction of Death or Heart Failure-related Hospitalizations by Cardio-ankle Vascular Index (CAVI) and CAVI0. Artery Res. 2019;25 (Suppl 1):189-90. doi:10.2991/artres.k-191224.172.
262. Schott A, Kluttig A, Mikolajczyk R, et al. Association of arterial stiffness and heart failure with preserved ejection fraction in the elderly population — results from the CARLA study. J Hum Hypertens. 2023;37:463-71. doi:10.1038/s41371-022-00703-y.
263. Pandey A, Shah SJ, Butler J, et al. Exercise intolerance in older adults with heart failure with preserved ejection fraction: JACC Stateof-the-Art. J Am Coll Cardiol. 2021;78(11):1166-87. doi:10.1016/j.jacc.2021.07.014.
264. Грачев Д.С., Петров В.С., Намазова К.И. и др. Сосудистая жесткость у пациентов старческого возраста с хронической сердечной недостаточностью. Российский медико-биологический вестник им. акад. И.П. Павлова. 2024;32(1):65-72. doi:10.17816/PAVLOVJ375266.
265. Takagi K, Ishihara S, Kenji N. Clinical significance of arterial stiffness as a factor for hospitalization of heart failure with preserved left ventricular ejection fraction: a retrospective matched case-control study. J Cardiol. 2020;76:171-6.
266. Sato Y, Yoshihisa A, Ichijo Y, et al. Cardio-Ankle Vascular Index Predicts Post-Discharge Stroke in Patients with Heart Failure. J Atheroscler Thromb. 2021;28(7):766-75. doi:10.5551/jat.58727.
267. Watanabe K, Yoshihisa A, Sato Y, et al. Cardio-Ankle Vascular Index Reflects Impaired Exercise Capacity and Predicts Adverse Prognosis in Patients With Heart Failure. Front Cardiovasc Med. 2021;8:631807. doi:10.3389/fcvm.2021.631807.
268. Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC state-of-the-art review. Journal of the American College of Cardiology. 2019;74(9):1237-63. doi:10.1016/j.jacc.2019.07.012.
269. Sagmeister P, Rosch, S, Fengler K, et al. Running on empty: Factors underpinning impaired cardiac output reserve in heart failure with preserved ejection fraction. Experimental Physiology. 2024:1-14. doi:10.1113/EP091776.
270. Lamacchia O, Sorrentino MR. Diabetes Mellitus, Arterial Stiffness and Cardiovascular Disease: Clinical Implications and the Influence of SGLT2i. Curr Vasc Pharmacol. 2021;19(2):233-40. doi:10.2174/1570161118666200317150359.
271. Nathaniel S, McGinty S, Witman MAH, et al. Impact of angiotensin receptor–neprilysin inhibition on vascular function in heart failure with reduced ejection fraction: A pilot study. Physiological Reports. 2022;10:e15209. doi:10.14814/phy2.15209.
272. Bunsawat K, Ratchford SM, Alpenglow JK, et al. Sacubitril-Valsartan improves conduit vessel function and functional capacity, and reduces inflammation in heart failure with reduced ejection fraction. Journal of Applied Physiology. 2021;130(1):256-68. doi:10.1152/japplphysiol.00454.2020.
273. Bunsawat K, Ratchford SM, Alpenglow JK, et al. Sympathoinhibitory effect of sacubitril-valsartan in heart failure with reduced ejection fraction: A pilot study. Autonomic Neuroscience, 2021;235:102834. doi:10.1016/j.autneu.2021.102834.
274. Sakai T, Miura S. Effects of Sodium-Glucose Cotransporter 2 Inhibitor on Vascular Endothelial and Diastolic Function in Heart Failure With Preserved Ejection Fraction — Novel Prospective Cohort Study. Circ Rep. 2019;1(7):286-95. doi:10.1253/circrep.CR-19-0018.
275. Ogawa A, Shimizu K, Nakagami T, et al. Physical function and cardioankle vascular index in elderly heart failure patients. Int Heart J. 2020;61:769-75. doi:10.1536/ihj.20-058.
276. Springer J.Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Heart Failure. 2017;4(4):492-8. doi:10.1002/ehf2.12237.
277. Kanzaki Sh, Ogawa A, Ikeda Y, et al. Short Physical Performance Battery and Cardio-Ankle Vascular Index Association in Older Patients with Heart Failure, International Heart Journal. 2024; 61(5):866-72. doi:10.1536/ihj.24-378.
278. Cockwell P, Fisher L-A. The global burden of chronic kidney disease. Lancet. 2020;395:662-4. doi:10.1016/S0140-6736(19)32977-0.
279. Клинические рекомендации. Хроническая болезнь почек (ХБП). Нефрология. 2021;25(5):10-82. doi:10.36485/1561-6274-2021-25-5-10-82.
280. Zoccali C, Mallamaci F, Adamczak M, et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc Res. 2023;119(11):2017-32. doi:10.1093/cvr/cvad083.
281. Peyster E, Chen J, Feldman HI, et al.; CRIC Study Investigators. In-flammation and Arterial Stiffness in Chronic Kidney Disease: Findings From the CRIC Study. Am J Hypertens. 2017;30(4):400-8. doi:10.1093/ajh/hpw164.
282. Bassuk SS, Rifai N, Ridker PM. High-sensitivity C-reactive protein: clinical importance. Curr Probl Cardiol. 2004;29:439-93.
283. Danenberg HD, Szalai AJ, Swaminathan RV, et al. Increased thrombosis after arterial injury in human C-reactive proteintransgenic mice. Circulation. 2003;108:512-5. doi:10.1161/01.CIR.0000085568.13915.1E.
284. Schumacher W, Cockcroft J, Timpson NJ, et al. Association between C-reactive protein genotype, circulating levels, and aortic pulse wave velocity. Hypertension. 2009;53:150-7. doi:10.1161/HYPERTENSIONAHA.108.117622.
285. Vlachopoulos C, Pietri P, Aznaouridis K, et al. Relationship of fibrinogen with arterial stiffness and wave reflections. J Hypertens. 2007;25:2110-6. doi:10.1097/HJH.0b013e3282dc25da.
286. Xu C, Tsihlis G, Chau K, et al. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci. 2024;25(5):2658. doi:10.3390/ijms25052658.
287. Nemcsik J, Kiss I, Tislér A. Arterial stiffness, vascular calcification and bone metabolism in chronic kidney disease. World J Nephrol. 2012;1(1):25-34. doi:10.5527/wjn.v1.i1.25.
288. Edwards NC, Steeds RP, Stewart PM, et al. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol. 2009;54(6):505-12. doi:10.1016/j.jacc.2009.03.066.
289. Кобалава Ж.Д., Котовская Ю.В., Виллевальде С.В. и др. Артериальная жесткость и хроническая болезнь почек: причины и последствия. Рациональная Фармакотерапия в Кардиологии. 2014;10(1):83-91. doi:10.20996/1819-6446-2014-10-1-83-91.
290. Düsing P, Zietzer A, Goody PR, et al. Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med (Berl). 2021;99(3):335-48. doi:10.1007/s00109-021-02037-7.
291. Vervloet M, Cozzolino M. Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int. 2017;91:808-17. doi:10.1016/j.kint.2016.09.024.
292. Chiriac C, Ciurea OA, Lipan M, et al. Vitamin D deficiency, bone turnover markers and arterial calcifications in non-dialysis chronic kidney disease patients. Acta Endocrinol (Buchar). 2024;20(1):12- 20. doi:10.4183/aeb.2024.12.
293. Townsend RR, Anderson AH, Chirinos JA, et al.; CRIC Study Investigators. Association of Pulse Wave Velocity With Chronic Kidney Disease Progression and Mortality: Findings From the CRIC Study (Chronic Renal Insufficiency Cohort). Hypertension. 2018;71(6):1101-7. doi:10.1161/HYPERTENSIONAHA.117.10648.
294. Hitsumoto T. Clinical Usefulness of the Cardio-Ankle Vascular Index as a Predictor of Primary Cardiovascular Events in Patients With Chronic Kidney Disease. J Clin Med Res. 2018;10(12):883-90. doi:10.14740/jocmr3631.
295. Pasquier F, Leys D: Why are stroke patients prone to develop dementia? J Neurol. 1997;244(3):135-42. doi:10.1007/s004150050064.
296. Baumbach GL, Siems JE, Heistad DD. Effects of local reduction in pressure on distensibility and composition of cerebral arterioles. Circ Res. 1991;68(2):338-51. doi:10.1161/01.res.68.2.338.
297. Iulita MF, Noriega de la Colina A, Girouard H.Arterial stiffness, cognitive impairment and dementia: confounding factor or real risk? J Neurochem. 2018;144(5):527-48. doi:10.1111/jnc.14235.
298. Sadekova N, Vallerand D, Guevara E, et al. Carotid calcification in mice: a new model to study the effects of arterial stiffness on the brain. J Am Heart Assoc. 2013;2(3):e000224. doi:10.1161/JAHA.113.000224.
299. Bajramovic JJ. Regulation of innate immune responses in the central nervous system. CNS Neurol Disord Drug Targets. 2011;10(1):4-24. doi:10.2174/187152711794488610.
300. Agrawal S, Schneider JA. Vascular pathology and pathogenesis of cognitive impairment and dementia in older adults. Cereb Circ Cogn Behav. 2022;3:100148. doi:10.1016/j.cccb.2022.100148.
301. Muhire G, Iulita MF, Vallerand D, et al. Arterial Stiffness Due to Carotid Calcification Disrupts Cerebral Blood Flow Regulation and Leads to Cognitive Deficits. J Am Heart Assoc. 2019;8(9):e011630. doi:10.1161/JAHA.118.011630.
302. Choi SY, Park HE, Seo H, et al. Arterial stiffness using cardioankle vascular index reflects cerebral small vessel disease in healthy young and middle aged subjects. J Atheroscler Thromb. 2013;20(2):178-85. doi:10.5551/jat.14753.
303. Cooper LL, Woodard T, Sigurdsson S, et al. Cerebrovascular Damage Mediates Relations Between Aortic Stiffness and Memory. Hypertension. 2016;67(1):176-82. doi:10.1161/HYPERTENSIONAHA.115.06398.
304. Li X, Lyu P, Ren Y, et al. Arterial stiffness and cognitive impairment. J Neurol Sci. 2017;380:1-10. doi:10.1016/j.jns.2017.06.018.
305. Hughes TM, Craft S, Lopez OL. Review of "the potential role of arterial stiffness in the pathogenesis of Alzheimer's disease". Neurodegener Dis Manag. 2015;5(2):121-35. doi:10.2217/nmt.14.53.
306. Sugimoto T, Misu S, Sawa R, et al. Association between the CardioAnkle Vascular Index and Executive Function in CommunityDwelling Elderly People. J Atheroscler Thromb. 2016;23(7):857-64. doi:10.5551/jat.31005.
307. Yamamoto N, Yamanaka G, Ishikawa M, et al. Cardio-ankle vascular index as a predictor of cognitive impairment in community-dwelling elderly people: four-year follow-up. Dement Geriatr Cogn Disord. 2009;28(2):153-8. doi:10.1159/000235642.
308. Ткачева О.Н., Яхно Н.Н., Незнанов Н.Г. и др. Клинические рекомендации "Когнитивные расстройства у лиц пожилого и старческого возраста". Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(3-3):7-149. doi:10.17116/jnevro2025125337.
309. Cavero-Redondo I, Saz-Lara A, Lugones-Sánchez C, et al. Comparative effect of antihypertensive drugs in improving arterial stiffness in adults with hypertension (RIGIPREV study). A network meta-analysis. Front Pharmacol. 2023;14:1225795. doi:10.3389/fphar.2023.1225795.
310. Golovanova ED. Vascular remodeling and heart rate variability in different antihypertensive therapies. Rational Pharmacotherapy in Cardiology. 2008;4(1):62-6. doi:10.20996/1819-6446-2008-4-1.
311. Vicario A, Coca A, Gasecki D, et al. Effects of antihypertensive treatment on cognitive decline. ESH Scientific Newsletter. 2019; 20:nr73.
312. Peters R, Yasar S, Anderson CS, et al. Investigation of antihypertensive class, dementia, and cognitive decline: A meta-analysis. Neurology. 2020;94(3):e267-e281. doi:10.1212/WNL.0000000000008732.
313. Hughes D, Judge C, Murphy R, et al. Association of Blood Pressure Lowering With Incident Dementia or Cognitive Impairment: A Systematic Review and Meta-analysis. JAMA. 2020;323(19):1934- 44. doi:10.1001/jama.2020.4249.
314. The SPRINT MIND Investigators for the SPRINT Research Group. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA. 2019;321(6):553-61. doi:10.1001/jama.2018.21442.
315. Sink KM, Leng X, Williamson J, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009;169(13):1195-202. doi:10.1001/archinternmed.2009.175.
316. Peters R, Collerton J, Granic A, et al. Antihypertensive drug use and risk of cognitive decline in the very old: an observational study — the Newcastle 85+ Study. J Hypertens. 2015;33(10):2156-64. doi:10.1097/HJH.0000000000000653.
317. Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomized double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352(9137):1347-51. doi:10.1016/S0140-6736(98)03086-4.
318. Forette F, Seux M-L, Staessen JA, et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162(18):2046-52. doi:10.1001/archinte.162.18.2046.
319. Yasar S, Xia J, Yao W, et al. Antihypertensive drugs decrease risk of Alzheimer disease: Ginkgo Evaluation of Memory Study. Neurology. 2013;81(10):896-903. doi:10.1212/WNL.0b013e3182a35228.
320. Chuang YF, Breitner JCS, Chiu YL, et al. Use of diuretics is associated with reduced risk of Alzheimer's disease: the Cache County Study. Neurobiol Aging. 2014;35(11):2429-35. doi:10.1016/j.neurobiolaging.2014.05.002.
321. Ou YN, Tan CC, Shen XN, et al. Blood Pressure and Risks of Cognitive Impairment and Dementia: A Systematic Review and MetaAnalysis of 209 Prospective Studies. Hypertension. 2020;76(1):217- 25. doi:10.1161/HYPERTENSIONAHA.120.14993.
322. PROGRESS Collaborative Group. Randomised trial of a perindoprilbased blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001;358(9287):1033-41. doi:10.1016/S0140-6736(01)06178-5.
323. Tzourio C, Anderson C, Chapman N, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163(9):1069-75. doi:10.1001/archinte.163.9.1069.
324. Levi Marpillat N, Macquin-Mavier I, Tropeano AI, et al. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013;31(6):1073-82. doi:10.1097/HJH.0b013e3283603f53.
325. Chiu WC, Ho WC, Lin MH, et al. Angiotension receptor blockers reduce the risk of dementia. Journal of Hypertension. 2014,32:938- 47. doi:10.1097/HJH.0000000000000086.
326. Larsson SC, Markus HS. Does Treating Vascular Risk Factors Prevent Dementia and Alzheimer's Disease? A Systematic Review and Meta-Analysis. J Alz-heimers Dis. 2018;64(2):657-68. doi:10.3233/JAD-180288.
327. Trompet S, Westendorp RG, Kamper AM, de Craen AJ. Use of calcium antagonists and cognitive decline in old age. The Leiden 85-plus study. Neurobiol Aging. 2008;29(2):306-8. doi:10.1016/j.neurobiolaging.2006.10.006.
328. Upala S, Wirunsawanya K, Jaruvongvanich V, Sanguankeo A. Effects of statin therapy on arterial stiffness: A systematic review and metaanalysis of randomized controlled trial. Int J Cardiol. 2017;227:338- 41. doi:10.1016/j.ijcard.2016.11.073.
329. Rizos EC, Agouridis AP, Elisaf MS. The effect of statin therapy on arterial stiffness by measuring pulse wave velocity: a systematic review. Curr Vasc Pharmacol. 2010;8(5):638-44. doi:10.2174/157016110792006950.
330. Power MC, Weuve J, Sharrett AR, et al. Statins, cognition, and dementia — systematic review and methodological commentary. Nat Rev Neurol. 2015;11(4):220-9. doi:10.1038/nrneurol.2015.35.
331. Adhikari A, Tripathy S, Chuzi S, et al. Association between statin use and cognitive function: A systematic review of randomized clinical trials and observational studies. J Clin Lipidol. 2021;15(1):22-32.e12. doi:10.1016/j.jacl.2020.10.007.
332. Olmastroni E, Molari G, De Beni N, et al. Statin use and risk of dementia or Alzheimer's disease: a systematic review and metaanalysis of observational studies. Eur J Prev Cardiol. 2022; 29(5):804-14. doi:10.1093/eurjpc/zwab208.
333. Gustavsson AM, Stomrud E, Abul-Kasim K, et al. Cerebral Microbleeds and White Matter Hyperintensities in Cognitively Healthy Elderly: A Cross-Sectional Cohort Study Evaluating the Effect of Arterial Stiffness. Cerebrovasc Dis Extra. 2015;5(2):41-51. doi:10.1159/000377710.
334. Singer J, Trollor JN, Crawford J, et al. The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study. PLoS One. 2013;8(4):e61855. doi:10.1371/journal.pone.0061855.
335. Sugawara N, Yasui-Furukori N, Umeda T, et al. Comparison of ankle-brachial pressure index and pulse wave velocity as markers of cognitive function in a community-dwelling population. BMC Psychiatry. 2010;10:46. doi:10.1186/1471-244X-10-46.
336. Pase MP, Pipingas A, Kras M, et al. Healthy middle-aged individuals are vulnerable to cognitive deficits as a result of increased arterial stiffness. J Hypertens. 2010;28(8):1724-9. doi:10.1097/HJH.0b013e32833b1ee7.
337. Poels MM, van Oijen M, Mattace-Raso FU, et al. Arterial stiffness, cognitive decline, and risk of dementia: the Rotterdam study. Stroke. 2007;38(3):888-92. doi:10.1161/01.STR.0000257998.33768.87.
338. Escárcega RO, Lipinski MJ, García-Carrasco M, et al. Inflammation and atherosclerosis: Cardiovascular evaluation in patients with autoimmune diseases. Autoimmun Rev. 2018;17(7):703-8. doi:10.1016/j.autrev.2018.01.021.
339. Dregan A, Charlton J, Chowienczyk P, et al. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation. 2014;130:837-44. doi:10.1161/CIRCULATIONAHA.114.009990.
340. Ahlehoff O, Gislason GH, Charlot M, et al. Psoriasis is associated with clinically signif-icant cardiovascular risk: a Danish nationwide cohort study. J Intern Med. 2011;270:147-57. doi:10.1111/j.1365-2796.2010.02310.x.
341. Dregan А, Сhowienczyk P, Molokhia M. Cardiovascular and type 2 diabetes morbidity and all-cause mortality among diverse chronic inflammatory disorders. Heart. 2017;103:1867-73. doi:10.1136/heartjnl-2017-311214.
342. Crowson CS, Rollefstad S, Ikdahl E, et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann Rheum Dis. 2018;77(1):48-54. doi:10.1136/annrheumdis-2017-211735.
343. Fan F, Galvin A, Fang l, et al. Comparison of inflammation, arterial stiffness and traditional cardiovascular risk factors between rheumatoid arthritis and inflammatory bowel disease. J Inflamm. 2014;11:29. doi:10.1186/s12950-014-0029-0.
344. Dregan A.Arterial stiffness association with chronic inflammatory disorders in the UK Biobank study. Heart Br Card Soc. 2018;104(15):1257-62. doi:10.1136/heartjnl-2017-312610.
345. Anyfanti P, Triantafyllou A, Gkaliagkousi E, et al. Association of noninvasive hemo-dynamics with arterial stiffness in rheumatoid arthritis. Scand Cardiovasc J. 2018;52(4):171-6. doi:10.1080/14017431.2018.1453943.
346. Maloberti A, Riva M, Tadic M, et al. Association Between Atrial, Ventricular and Vascular Morphofunctional Alterations in Rheumatoid Arthritis. High Blood Press Cardiovasc Prev. 2018;25(1):97-104. doi:10.1007/s40292-017-0246-8.
347. Anyfanti P, Bekiari E, Angeloudi E, et al. Arterial stiffness in rheumatoid arthritis: Current knowledge and future perspectivess. Indian J Rheumatol. 2022;17:157-65. doi:10.4103/injr.injr_254_21.
348. Ambrosino P, Tasso M, Lupoli R, et al. Non-invasive assessment of arterial stiffness in patients with rheumatoid arthritis: A systematic review and meta-analysis of literature studies. Ann Med. 2015;47:457-67. doi:10.3109/07853890.2015.1068950.
349. Wang P, Huang L, Xu Q, et al. Assessment of aortic stiffness in patients with rheumatoid arthritis using pulse wave velocity: An update meta-analysis. Arch Med Res. 2019;50:401-12. doi:10.1016/j.arcmed.2019.10.010.
350. Vázquez-Del Mercado M, Gomez-Bañuelos E, et al. Disease duration of rheumatoid arthritis is a predictor of vascular stiffness: a cross-sectional study in patients without known cardiovascular comorbidities. Medicine (Baltimore). 2017;96(33):e7862. doi:10.1097/MD.0000000000007862.
351. Князева Л.А., Мещерина Н.С., Горяйнов И.И. и др. Оценка состояния эндотелиальной функции и ригидности артериальной стенки у больных ревматоидным артритом. Курский научно-практический вестник "Человек и его здоровье". 2013;(4):78-84.
352. Özcan ANŞ, Aslan AN, Ünal Ö, et al. Novel ultrasound-based technique to establish a correlation between disease activity and local carotid stiffness parameters in rheumatoid arthritis. Med Ultrason. 2017;19(3):288-94. doi:10.11152/mu-949.
353. Aslan AN, Şirin Özcan AN, Erten Ş, et al. Assessment of local carotid stiffness in seronegative and seropositive rheumatoid arthritis. Scand Cardiovasc J. 2017;51(5):255-60. doi:10.1080/14017431.2017.1343493.
354. Cioffi G, Viapiana O, Ognibeni F, et al. Clinical profile and outcome of patients with rheumatoid arthritis and abnormally high aortic stiffness. Eur J Prev Cardiol. 2016;23(17):1848-59. doi:10.1177/2047487316649762.
355. Круглый Л.Б., Заирова А.Р., Фомичева О.А. и др. Показатели жесткости артерий у больных ревматоидным артритом и ишемической болезнью сердца. Научно-практическая ревматология. 2017;55(4):382-7. doi:10.14412/1995-4484-2017-382-387.
356. Sacre K, Escoubet B, Pasquet B, et al. Increased arterial stiffness in systemic lupus erythematosus (SLE) patients at low risk for cardiovascular disease: a cross-sectional controlled study. PloS One. 2014;9(4):e94511. doi:10.1371/journal.pone.0094511.
357. Santos MJ, Carmona-Fernandes D, Canhão H, et al. Early vascular alterations in SLE and RA patients–a step towards understanding the associated cardiovascular risk. PloS One. 2012;7(9):e44668. doi:10.1371/journal.pone.0044668.
358. Jurcut C, Caraiola S, Nitescu D, et al. Subclinical vascular disease in patients with systemic lupus erythematosus: the additive deleterious effect of the antiphospholipid syndrome. Jt Bone Spine Rev Rhum. 2012;79(6):628-9. doi:10.1016/j.jbspin.2012.01.014.
359. Parra S, Lopez-Dupla M, Ibarretxe D, et al. Patients With Systemic Lupus Erythema-tosus Show an Increased Arterial Stiffness That is Predicted by IgM Anti-β2-Glycoprotein I and Small Dense HighDensity Lipoprotein Particles. Arthritis Care Res. 2019;71(1):116-25. doi:10.1002/acr.23594.
360. Gerli R, Vaudo G, Bocci EB, et al. Functional impairment of the arterial wall in primary Sjögren’s syndrome: combined action of immunologic and inflammatory factors. Arthritis Care Res (Hoboken). 2010;62:712-8. doi:10.1002/acr.20117.
361. Sezis Demirci M, Karabulut G, Gungor O, et al. Is There an Increased Arterial Stiffness in Patients with Primary Sjögren’s Syndrome? Intern Med. 2016;55(5):455-9. doi:10.2169/internalmedicine.55.3472.
362. Atzeni F, Sarzi-Puttini P, Signorello MC, et al. New parameters for identifying subclinical atherosclerosis in patients with primary Sjögren’s syndrome: a pilot study. Clin Exp Rheumatol. 2014;32(3):361-8. doi:10.1136/annrheumdis-2013-eular.848.
363. Sabio JM, Sánchez‐Berná I, Martinez‐Bordonado J, et al. Prevalence of and Factors Associated With Increased Arterial Stiffness in Patients With Primary Sjögren’s Syndrome. Arthritis Care Res. 2015;67(4):554-62. doi:10.1002/acr.22493.
364. Gyöngyösi M, Pokorny G, Jambrik Z, et al. Cardiac manifestations in primary Sjögren’s syndrome. Ann Rheum Dis. 1996;55(7):450-4. doi:10.1136/ard.55.7.450.
365. Patschan D, Sugiarto N, Henze E, et al. Early endothelial progenitor cells and vascular stiffness in psoriasis and psoriatic arthritis. Eur J Med Res. 2018;23(1):56. doi:10.1186/s40001-018-0352-7.
366. Balta I, Balta S, Demirkol S, et al. Aortic arterial stiffness is a moderate predictor of cardiovascular disease in patients with psoriasis vulgaris. Angiology. 2014;65(1):74-8. doi:10.1177/0003319713485805.
367. Costa L, Caso F, D’Elia L, et al. Psoriatic arthritis is associated with increased arterial stiffness in the absence of known cardiovascular risk factors: a case control study. Clin Rheumatol. 2012;31(4):711-5. doi:10.1007/s10067-011-1892-1.
368. Bai R, Zhang Y, Liu W, et al. The Relationship of Ankylosing Spondylitis and Subclinical Atherosclerosis: A Systemic Review and Meta-Analysis. Angiology. 2019;70(6):492-500. doi:10.1177/0003319718814309.
369. Avram C, Drăgoi RG, Popoviciu H, et al. Association between arterial stiffness, disease activity and functional impairment in ankylosing spondylitis patients: a crosssectional study. Clin Rheumatol. 2016;35(8):2017-22. doi:10.1007/s10067-016-3297-7.
370. Kaplanoglu H, Özişler C. Evaluation of subclinical atherosclerosis using ultrasound radiofrequency data technology in patients diagnosed with ankylosing spondylitis. J Ultra-sound Med Off J Am Inst Ultrasound Med. 2019;38(3):703-11. doi:10.1002/jum.14754.
371. Berg IJ, Semb AG, van der Heijde D, et al. CRP and ASDAS are associated with future elevated arterial stiffness, a risk marker of cardiovascular disease, in patients with ankylosing spondylitis: results after 5-year follow-up. Ann Rheum Dis. 2015;74(8):1562-6. doi:10.1136/annrheumdis-2014-206773.
372. Triantafyllias К, Thiele LE, Mandel A, et al. Arterial Stiffness as a Surrogate Marker of Cardiovascular Disease and Atherosclerosis in Patients with Vasculitides: A Literature Review. Diagnostics. 2023;13:3603. doi:10.3390/diagnostics13243603.
373. Lyon AR, Lopez-Fernandez T, Couch SM, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;23(10):e333-e465. doi:10.1093/eurheartj/ehac244.
374. Васюк Ю. А., Шупенина Е.Ю., Носова А. Г. и др. Вазотоксические эффекты противоопухолевой терапии: обзор современных данных. Рациональная Фармакотерапия в Кардиологии. 2023;19(2):203-8. doi:10.20996/1819-6446-2023-03-03. EDN ANRXKY.
375. Parr SK, Liang J, Schadler KL, et al. Anticancer Therapy–Related Increases in Arterial Stiffness: A Systematic Review and MetaAnalysis. J Am Heart As-soc. 2020;9:e015598. doi:10.1161/JAHA.119.015598.
376. Frye JN, Sutterfield SL, Caldwell JT, et al. Vascular and autonomic changes in adult cancer patients receiving anticancer chemotherapy. J Appl Physiol. 2018;125:198-204. doi:10.1152/japplphysiol.00005.2018.
377. Campia U, Moslehi JJ, Amiri-Kordestani L, et al. Cardio-oncology: vascular and metabolic perspectives: a scientific statement from the American Heart Association. Circulation. 2019;139:e579-e602. doi:10.1161/CIR.0000000000000641.
378. Cao Z, Xu C, Yang H, et al. The role of healthy lifestyle in cancer incidence and temporal transitions to cardiometabolic disease. JACC CardioOncology. 2021;3:663-74. doi:10.1016/j.jaccao.2021.09.016.
379. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation. 2003;107:490-7. doi:10.1161/01.cir.0000048894.99865.02.
380. Donato AJ, Black AD, Jablonski KL, et al. Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell. 2008;7:805-12. doi:10.1111/j.1474-9726.2008.00438.x.
381. Moreau KL, Gavin KM, Plum AE, Seals DR. Oxidative stress explains differences in large elastic artery compliance between sedentary and habitually exercising postmenopausal women. Menopause. 2006;13:951-8. doi:10.1097/01.gme.0000243575.09065.48.
382. Visvikis A, Kyvelou SM, Pietri P, et al. Cardiotoxic Profile and Arterial Stiffness of Adjuvant Chemotherapy for Colorectal Cancer. Cancer Manag Res. 2020;12:1175-85. doi:10.2147/CMAR.S223032.
383. McAllister RM, Laughlin MH. Vascular nitric oxide: effects of physical activity, importance for health. Essays Biochem. 2006;42:119-31. doi:10.1042/bse0420119.
384. Wilkinson IB, Franklin SS, Cockcroft JR. Nitric oxide and the regulation of large artery stiffness: from physiology to pharmacology. Hypertension. 2004;44:112-6. doi:10.1161/01.HYP.0000138068.03893.40.
385. Stocker R, Keaney JF Jr.Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381-478. doi:10.1152/physrev.00047.2003.
386. Pacher P, Szabo C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol. 2006;6:136-41. doi:10.1016/j.coph.2006.01.001.
387. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932-43. doi:10.1161/01.ATV.0000160548.78317.29.
388. Res E, Kyvelou SM, Vlachopoulos C, et al. Metastatic malignancies and the effect on arterial stiffness and blood pressure levels: the possible role of chemotherapy. Onco Targets Ther. 2018:11:6785- 93. doi:10.2147/OTT.S156318.
389. Townsend RR, Wilkinson IB, Schiffrin EL, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698-722. doi:10.1161/HYP.0000000000000033.
390. Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505-11. doi:10.1161/CIRCULATIONAHA.109.886655.
391. Moreau KL, Donato AJ, Seals DR, et al. Regular exercise, hormone replacement therapy and the age-related decline in carotid arterial compliance in healthy women. Cardiovasc Res. 2003;57:861-8. doi:10.1016/s0008-6363(02)00777-0.
392. DeVan AE, Seals DR. Vascular health in the ageing athlete. Exp Physiol. 2012;97:305-10. doi:10.1113/expphysiol.2011.058792.
393. Plantinga Y, Ghiadoni L, Magagna A, et al. Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients. Am J Hypertens. 2007;20:392-7. doi:10.1016/j.amjhyper.2006.09.021.
394. Rammos C, Hendgen-Cotta UB, Sobierajski J, et al. Dietary nitrate reverses vascular dysfunction in older adults with moderately increased cardiovascular risk. J Am Coll Cardiol. 2014;63:1584-5. doi:10.1016/j.jacc.2013.08.691.
395. Herceg-Cavrak V, Ahel V, Batinica M, et al. Increased arterial stiffness in children treated with anthracyclines for malignant disease. Coll Antropol. 2011;35:389-95.
396. Jenei Z, Bardi E, Magyar MT, et al. Anthracycline causes impaired vascular endothelial function and aortic stiffness in long term survivors of childhood cancer. Pathol Oncol Res. 2013;19:375-83. doi:10.1007/s12253-012-9589-6.
397. Васюк Ю.А., Гендлин Г.Е., Емелина Е.И. и др. Согласованное мнение российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский кардиологический журнал. 2021;26(9):4703. doi:10.15829/1560-4071-2021-4703.
398. Meyer CC, Calis KA, Burke LB, et al. Symptomatic cardio-toxicity associated with 5-fluorouracil. Pharmacotherapy. 1997;17(4): 729-36.
399. Sara JD, Kaur J, Khodadadi R, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:175883591878014. doi:10.1177/1758835918780140.
400. Прибылова Н.Н., Прибылов С.А., Степченко А.А. и др. Методика измерения жесткости сосудистой стенки в практике кардиологического отделения. Мето¬дические рекомендации. Курск, 2014. 29 с. ISBN: 978-5-7487- 1670-3.
401. Shirai K, Suzuki K, Tsuda S, et al. Comparison of Cardio-Ankle Vascular Index (CAVI) and CAVI0 in Large Healthy and Hypertensive Populations. J.Atheroscler Thromb. 2019;26(7):603-15. doi:10.5551/jat.48314.
402. Макеева Л.М., Емелина Е.И., Быкова А.В. и др. Сравнительный анализ нарушений сердечнососудистой системы у пациентов с хроническим миелолейкозом на фоне лечения ингибиторами тирозинкиназы. Клиническая Онкогематология. 2020;13(1):104-11. doi:10.21320/2500-2139-2020-13-1-104-111.
403. Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Nilotinibinduced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388-97. doi:10.1038/leu.2017.245.
404. Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc Med. 2021;8. doi:10.3389/fcvm.2021.785738.
405. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New Eng J Med. 2020;383(2):120-8. doi:10.1056/nejmoa2015432.
406. Подзолков В.И., Тарзиманова А.И., Брагина А.Е. и др. Поражение сердечно-сосудистой системы у больных с коронавирусной инфекцией SARS-CoV-2. Часть 1: предикторы развития неблагоприятного прогноза. Рациональная фармакотерапия в кардиологии. 2021;17(6):825- 30. doi:10.20996/1819-6446-2021-11-03.
407. Подзолков В.И., Брагина А.Е., Тарзиманова А.И. и др. Артериальная гипертензия и неблагоприятное течение COVID-19 среди госпитализированных больных: данные когортного исследования из России. Рациональная Фармакотерапия в Кардиологии. 2023;19(1):4-10. doi:10.20996/1819-6446-2023-01-10.
408. Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020;41(19):1798-800. doi:10.1093/eurheartj/ehaa231.
409. Szeghy RE, Province VM, Stute NL, et al. Carotid stiffness, intimamedia thickness and aortic augmentation index among adults with SARS-CoV-2. Exp Physiol. 2022;107(7):694-707. doi:10.1113/EP089481.
410. Ratchford SM, Stickford JL, Province VM, et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol. 2021;320(1):H404-H410. doi:10.1152/ajpheart.00897.2020.
411. Schnaubelt S, Oppenauer J, Tihanyi D, et al. Arterial stiffness in acute COVID-19 and potential associations with clinical outcome. J Intern Med. 2021;290(2):437-43. doi:10.1111/joim.13275.
412. Faria D, Moll-Bernardes RJ, Testa L, et al. Sympathetic Neural Over-drive, Aortic Stiffening, Endothelial Dysfunction, and Impaired Exercise Capacity in Severe COVID-19 Survivors: A Mid-Term Study of Cardiovascular Sequelae. Hypertension. 2023;80(2):470-81. doi:10.1161/HYPERTENSIONAHA.122.19958.
413. Stamatelopoulos K, Georgiopoulos G, Baker KF, et al. Pisa COVID-19 Research Group; Newcastle COVID-19 Research Group. Estimated pulse wave velocity improves risk stratification for all-cause mortality in patients with COVID-19. Sci Rep. 2021;11(1):20239. doi:10.1038/s41598-021-99050-0.
414. Kumar N, Kumar S, Kumar A, et al. The COSEVAST Study Outcome: Evidence of COVID-19 Severity Proportionate to Surge in Arterial Stiffness. Indian J Crit Care Med. 2021;25(10):1113-9. doi:10.5005/jp-journals-10071-24000.
415. Rodilla E, López-Carmona MD, Cortes X, et al.; SEMI-COVID-19 Network. Impact of Arterial Stiffness on All-Cause Mortality in Patients Hospitalized With COVID-19 in Spain. Hypertension. 2021;77(3):856-67. doi:10.1161/HYPERTENSIONAHA.120.16563.
416. Aydın E, Kant A, Yilmaz G.Evaluation of the cardio-ankle vascular index in COVID-19 patients. Rev Assoc Med Bras (1992). 2022; 68(1):73-6. doi:10.1590/1806-9282.20210781.
417. Kar M.Vascular Dysfunction and Its Cardiovascular Consequences During and After COVID-19 Infection: A Narrative Review. Vasc Health Risk Manag. 2022;18:105-12. doi:10.2147/VHRM.S355410.
418. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi:10.1016/S0140-6736(20)30937-5.
419. Подзолков В.И., Тарзиманова А.И., Брагина А.Е. и др. Влияние терапии спиронолактоном на активность системы матриксных металлопротеиназ у больных с хронической сердечной недостаточностью, перенесших коронавирусную инфекцию SARS-CoV-2. Кардиоваскулярная терапия и профилактика. 2022;21(10):3431. doi:10.15829/1728-8800-2022-3431.
420. Подзолков В.И., Покровская А.Е., Ванина Д.Д., Сафронова Т.А. Взаимосвязь резистина с сосудистой жесткостью и тяжестью течения новой коронавирусной инфекции COVID-19 у пациентов с разным индексом массы тела. Лечебное дело. 2023;(1):72-80. doi:10.24412/2071-5315-2023-12953.
421. Подзолков В.И., Брагина А.Е., Тарзиманова А.И. и др. Взаимосвязь сердечно-лодыжечного сосудистого индекса с маркерами тромбообразования у госпитализированных больных COVID-19. Терапевтический архив. 2023;95(7):548-53. doi:10.26442/00403660.2023.07.202292.
422. Jud P, Gressenberger P, Muster V, et al. Evaluation of Endothelial Dysfunction and Inflammatory Vasculopathy After SARS-CoV-2 Infection-A Cross-Sectional Study. Front Cardiovasc Med. 2021; 8:750887. doi:10.3389/fcvm.2021.750887.
423. Lambadiari V, Mitrakou A, Kountouri A, et al. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur J Heart Fail. 2021;23(11):1916-26. doi:10.1002/ejhf.2326.
424. Szeghy RE, Stute NL, Province VM, et al. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J Appl Physiol (1985). 2022;132(5):1297-309. doi:10.1152/japplphysiol.00793.2021.
425. Zanoli L, Gaudio A, Mikhailidis DP, et al. Methuselah Study Group. Vascular Dysfunction of COVID-19 Is Partially Reverted in the Long-Term. Circ Res. 2022;130(9):1276-85. doi:10.1161/CIRCRESAHA.121.320460.
426. Ikonomidis I, Lambadiari V, Mitrakou A, et al. Myocardial work and vascular dysfunction are partially improved at 12 months after COVID-19 infection. Eur J Heart Fail. 2022;24(4):727-9. doi:10.1002/ejhf.2451.
427. Олейников В.Э., Авдеева И.В., Полежаева К.Н. и др. Структурно-функциональные свойства артерий у лиц, перенесших новую коронавирусную инфекцию. Кардиоваскулярная терапия и профилактика. 2023;22(5):3541. doi:10.15829/1728-8800-2023-3541.
428. Bruno RM, Spronck B, Hametner B, et al. Covid-19 Effects on ARTErial StIffness and Vascular AgeiNg: CARTESIAN Study Rationale and Protocol. Artery Res. 2020;27(2):59. doi:10.2991/artres.k.201124.001.
429. Namba T, Masaki N, Takase B, Adachi T. Arterial Stiffness Assessed by Cardio-Ankle Vascular Index. Int J Mol Sci. 2019;20(15):3664. doi:10.3390/ijms20153664.
430. Trifonova SS, Gaisenok OV, Sidorenko BA. Application of Methods of Assessment of Vascular Wall Stiffness in Clinical Practice: Capabilities of Cardio-Ankle Vascular Index. Kardiologiia. 2015; 55(4):61-6. doi:10.18565/cardio.2015.4.61-66.
431. Бахолдин И.Б., Милягин В.А., Талов А.В., Тентюков Д.Е. Индекс stelari start — новый перспективный показатель сосудистой индекс stelari start — новый перспективный показатель сосудистой жесткости. Вестник смоленской государственной медицинской академии. 2022;21(3):96-103. doi:10.37903/vsgma.2022.3.11. EDN: EVRYPK.
432. Васютин И.А., Леон К., Сафронова Т.А. и др. Сравнение нового индекса жесткости сосудистой стенки START с индексом CAVI, оценка их значений и корреляций с клиническими показателями. Российский кардиологический журнал. 2023;28(1):5272. doi:10.15829/1560-4071-2023-5272. EDN: IQNVXV.
433. Сумин А.Н., Щеглова А.В., Бахолдин И.Б. Возможности нового показателя START в оценке сосудистой жесткости у здоровых лиц. Артериальная гипертензия. 2023;29(1):38-50. doi:10.18705/1607-419X-2023-29-1-38-50.
434. Сумин А.Н., Щеглова А.В., Барбараш О.Л. Прогностическое значение нового индекса жесткости артерий START у пациентов с ишемической болезнью сердца после коронарного шунтирования. Российский кардиологический журнал. 2024;29(12):5952. doi:10.15829/1560-4071-2024-5952. EDN: XPBYYL.
435. Spronck B, Terentes-Printzios D, Avolio AP, et al.; Association for Research into Arterial Structure and Physiology (ARTERY), the European Society of Hypertension Working Group on Large Arteries, European Cooperation in Science and Technology (COST) Action VascAgeNet, North American Artery Society, ARTERY LATAM, Pulse of Asia, and Society for Arterial Stiffness — Germany-Austria-Switzerland (DeGAG). 2024 Recommendations for Validation of Noninvasive Arterial Pulse Wave Velocity Measurement Devices. Hypertension. 2024;81(1):183-92. doi:10.1161/HYPERTENSIONAHA.123.21618.
Дополнительные файлы
Рецензия
Для цитирования:
Подзолков В.И., Сафронова Т.А., Васюк Ю.А., Котовская Ю.В., Кисляк О.А., Стародубова А.В., Копылов Ф.Ю., Евсевьева М.Е., Сумин А.Н., Тарзиманова А.И., Остроумова О.Д., Ларина В.Н., Павлова О.С., Иванова С.В., Чулков В.С., Беставашвили А.А., Кочетков А.И., Лискова Ю.В., Лузина А.В., Покровская А.Е., Сергеева О.В., Шупенина Е.Ю., Брагина А.Е. Диагностика артериальной жесткости с помощью сердечно-лодыжечного сосудистого индекса. Согласованное мнение экспертов. Кардиоваскулярная терапия и профилактика. 2025;24(8):4481. https://doi.org/10.15829/1728-8800-2025-4481. EDN: FDECVC
For citation:
Podzolkov V.I., Safronova T.A., Vasyuk Yu.A., Kotovskaya Yu.V., Kislyak O.A., Starodubova A.V., Kopylov F.Yu., Evsevieva M.E., Sumin A.N., Tarzimanova A.I., Ostroumova O.D., Larina V.N., Pavlova O.S., Ivanova S.V., Chulkov V.S., Bestavashvili A.A., Kochetkov A.I., Liskova Yu.V., Luzina A.V., Pokrovskaya A.E., Sergeeva O.V., Shupenina E.Yu., Bragina A.E. Diagnosis of arterial stiffness using the cardio-ankle vascular index. Expert consensus. Cardiovascular Therapy and Prevention. 2025;24(8):4481. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4481. EDN: FDECVC