Preview

Cardiovascular Therapy and Prevention

Advanced search

Efficacy of lipid-­lowering therapy in patients with genetically confirmed familial hypercholesterolemia

https://doi.org/10.15829/1728-8800-2025-4665

EDN: OUAIML

Abstract

Aim. To evaluate the effectiveness of lipid-lowering therapy (LLT) in patients with genetically confirmed familial hypercholesterolemia (FH).

Material and methods. The study included 140 patients with genetically confirmed FH, followed at the Lipid Center of the National Medical Research Center for Therapy and Preventive Medicine. Participants ranged in age from 19 to 80 years. Lipid profile parameters, clinical and genetic data were analyzed.

Results. In 89% of the patients studied, a variant in the LDLR gene was identified as the cause of FH, while in 11%, a variant in the APOB gene was identified. No variants in the PCSK9 gene were detected. High penetrance of the identified FH variants was demonstrated. In patients with a LDLR gene, low-density lipoprotein cholesterol (LDL-C) levels without LLT (median [interquartile range] 8,49 [7,43; 9,31] mmol/L) were higher than in patients with a variant in the APOB gene (7,55 [6,22; 8,33] mmol/L) (p<0,001). No patient achieved the target LDL-C level with statin monotherapy. The study demonstrated the high efficacy of triple LLT (statin/ezetimibe/PCSK9 inhibitors) as follows: 95,4% of patients with high cardiovascular risk (CVR) achieved the target LDL-C level, while only 63,6% in the very high CVR group.

Conclusion. The study results demonstrate that patient genetic characteristics influence baseline LDL-C levels but do not affect the efficacy of LLT. To achieve the target LDL-C level of 36,4%, patients in the very high CVD group should add bempedoic acid or lipid apheresis to the triple therapy (statin/ezetimibe/PCSK9 inhibitors).

About the Authors

V. I. Mikhailina
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



M. Zaichenoka
National Medical Research Center for Therapy and Preventive Medicine; Moscow Institute of Physics and Technology (National Research University)
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990,

Institutskiy Lane, 9, Dolgoprudny, 141701



A. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



А. V. Blokhina
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. V. Kiseleva
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. S. Limonova
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



O. V. Kopylova
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. A. Zharikova
National Medical Research Center for Therapy and Preventive Medicine; Lomonosov Moscow State University
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990,

Leninskie Gory, 1, Moscow, 119991



E. A. Sotnikova
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



M. S. Pokrovskaya
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



A. I. Ershova
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Россия

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



References

1. Ershova AI, Meshkov AN, Rozhkova TA, et al. Carotid and aortic stiffness in patients with heterozygous familial hyper­choles­terolemia. PLoS One. 2016;11(7):e0158964. doi:10.1371/journal.pone.0158964.

2. Yuan G, Wang J, Hegele RA. Heterozygous familial hypercholes­terolemia: an underrecognized cause of early cardiovascular disease. CMAJ. 2006;174(8):1124-9. doi:10.1503/cmaj.051313.

3. Meshkov AN, Ershova AI, Kiseleva AV, et al. The prevalence of he­te­rozygous familial hypercholesterolemia in selected regions of the Russian federation: The FH-ESSE-RF study. J Pers Med. 2021;11(6):464. doi:10.3390/jpm11060464.

4. EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Global perspective of familial hypercholesterolaemia: a cross-­sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet. 2021;398(10312):1713-25. doi:10.1016/S0140-6736(21)01122-3.

5. Ezhov MV, Kukharchuk VV, Sergienko IV, et al. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardio­lo­gy. 2023;28(5):5471. (In Russ.) doi:10.15829/1560-4071-2023-5471.

6. Ho VQT, Tran NB, Nguyen N, et al. PCSK9 targeting therapies for familial hypercholesterolaemia: a meta-analysis of efficacy on lipid biomarkers and safety in adults and children across 23 RCTs. Open Heart. 2025;12(2):e003490. doi:10.1136/openhrt-2025-003490.

7. Chubykina UV, Ezhov MV, Rozhkova TA, et al. Compliance of patients with heterozygous familial hypercholesterolemia: 5-year follow-up of the renaissance registry. Russian Cardiology Bulletin. 2023;18(3):35-48. (In Russ.) doi:10.17116/Cardiobulletin20231803135.

8. Santos PCJL, Morgan AC, Jannes CE, et al. Presence and type of low density lipoprotein receptor (LDLR) mutation influences the lipid profile and response to lipid-­lowering therapy in Brazilian patients with heterozygous familial hypercholesterolemia. Athe­ro­sclerosis. 2014;233(1):206-10. doi:10.1016/j.atherosclerosis.2013.12.028.

9. Chaves FJ, Real JT, García-­García AB, et al. Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population: influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol. J Clin Endocrinol Metab. 2001;86(10):4926-32. doi:10.1210/jcem.86.10.7899.

10. Roy G, Couture P, Genest J, et al. Influence of the LDL-recep­tor genotype on statin response in heterozygous familial hyper­cho­lesterolemia: Insights from the Canadian FH registry. Can J Car­diol. 2022;38(3):311-9. doi:10.1016/j.cjca.2021.10.013.

11. Defesche JC, Stefanutti C, Langslet G, et al. Efficacy of aliro­cu­mab in 1191 patients with a wide spectrum of mutations in genes causative for familial hypercholesterolemia. J Clin Lipidol. 2017;11(6):1338-46.e7. doi:10.1016/j.jacl.2017.08.016.

12. Choumerianou DM, Dedoussis GVZ. Familial hypercholeste­ro­lemia and response to statin therapy according to LDLR ge­netic background. Clin Chem Lab Med. 2005;43(8):793-801. doi:10.1515/CCLM.2005.134.

13. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus re­com­mendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. doi:10.1038/gim.2015.30.

14. Chora JR, Iacocca MA, Tichý L, et al. The Clinical Genome Re­source (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification. Genet Med. 2022;24(2):293-306. doi:10.1016/j.gim.2021.09.012.

15. Dzhumaniiazova IK, Meshkov AN, Daniel VV, et al. Prevalence and penetrance of pathogenic and likely pathogenic LDLR and APOB gene variants linked to familial hypercholesterolemia and increased risk of ischemic heart disease. Front Genet. 2025;16: 1589014. doi:10.3389/fgene.2025.1589014.

16. Meshkov AN, Ershova AI, Shcherbakova NV, et al. Phenotypical features of heterozygous familial hypercholesterolemia in indi­vi­duals with LDLR or APOB gene mutations. Cardiovascular The­rapy and Prevention. 2011;10(8):63-5. (In Russ.)

17. Di Taranto MD, Giacobbe C, Palma D, et al. Genetic spectrum of familial hypercholesterolemia and correlations with clinical expression: Implications for diagnosis improvement. Clin Genet. 2021;100(5):529-41. doi:10.1111/cge.14036.

18. Futema M, Ramaswami U, Tichy L, et al. Comparison of the mutation spectrum and association with pre and post treat­ment lipid measures of children with heterozygous fami­lial hypercholesterolaemia (FH) from eight European countries. Athe­ro­sclerosis. 2021;319:108-17. doi:10.1016/j.atherosclerosis.2021.01.008.

19. Dikilitas O, Sherafati A, Saadatagah S, et al. Familial hyper­cho­les­terolemia in the electronic medical records and genomics net­work: Prevalence, penetrance, cardiovascular risk, and out­comes after return of results. Circ Genom Precis Med. 2023; 16(2):e003816. doi:10.1161/CIRCGEN.122.003816.

20. Meshkov AN, Zaicenoka M, Mikhailina VI, et al. Genetic factors of familial hypercholesterolemia variability. Medical Genetics. 2025;24(6):98-100. (In Russ.) doi:10.25557/2073-7998.2025.06.98-100.

21. Goodrich JK, Singer-­Berk M, Son R, et al. Determinants of pene­trance and variable expressivity in monogenic metabolic con­ditions across 77,184 exomes. Nat Commun. 2021;12(1):3505. doi:10.1038/s41467-021-23556-4.

22. Blokhina AV, Ershova AI, Limonova AS, et al. PCSK9 Inhibitors in Clinical Practice: Experience of a Specialized Lipid Center. Rational Pharmacotherapy in Cardiology. 2021;17(6):808-15. (In Russ.) doi:10.20996/1819-6446-2021-12-01.

23. Blokhina AV, Ershova AI, Meshkov AN, et al. Phenotypic vs. genetic cascade screening for familial hypercholesterolemia: A case report. Front Cardiovasc Med. 2022;25:9:982607. doi:10.3389/fcvm.2022.982607.

24. Tada H, Kawashiri M-A, Nohara A, et al. Genetic counseling and genetic testing for familial hypercholesterolemia. Genes (Basel). 2024;15(3):297. doi:10.3390/genes15030297.

25. Mach F, Koskinas KC, Roeters van Lennep JE, et al. 2025 Fo­cused Update of the 2019 ESC/EAS Guidelines for the mana­gement of dyslipidaemias. Atherosclerosis. 2025;409:120479. doi:10.1016/j.atherosclerosis.2025.120479.

26. Rosenson RS, Burgess LJ, Ebenbichler CF, et al. Longer-term efficacy and safety of evinacumab in patients with refractory hyper­cholesterolemia. JAMA Cardiol. 2023;8(11):1070-6. doi:10.1001/jamacardio.2023.2921.

27. Rosenson RS, Burgess LJ, Ebenbichler CF, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med. 2020;383(24):2307-19. doi:10.1056/NEJMoa2031049.

28. Rader DJ, Kastelein JJP. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia: Two first-in-class drugs for reducing low-density lipo­pro­tein cholesterol in patients with homozygous familial hyper­cho­les­te­rolemia. Circulation. 2014;129(9):1022-32. doi:10.1161/CIRCULATIONAHA.113.001292.


Review

For citations:


Mikhailina V.I., Zaichenoka M., Meshkov A.N., Blokhina А.V., Kiseleva A.V., Limonova A.S., Kopylova O.V., Zharikova A.A., Sotnikova E.A., Pokrovskaya M.S., Ershova A.I., Drapkina O.M. Efficacy of lipid-­lowering therapy in patients with genetically confirmed familial hypercholesterolemia. Cardiovascular Therapy and Prevention. 2025;24(12):4665. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4665. EDN: OUAIML

Views: 29

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)