Preview

Cardiovascular Therapy and Prevention

Advanced search

Structural and functional state of the skin microcirculation in men with different phenotypes of hypertension of low and moderate cardiovascular risk

https://doi.org/10.15829/1728-8800-2024-4133

EDN: MNBJJE

Abstract

Aim. To study the structural and functional state of skin microcirculation in working-age men with different phenotypes of hypertension (HTN) of low/moderate cardiovascular risk.

Material and methods. A total of 218 healthy men underwent total blood count and biochemical blood tests, volumetric sphygmography, videocapillaroscopy, laser Doppler flowmetry at rest and with const­rictor and dilator tests, photoplethysmography, flow-mediated vasodilation of the brachial artery, cardiac and main artery ultrasound, 24-hour blood pressure (BP) monitoring. Based on the 24-hour BP monitoring, three following groups were formed: normal BP (NBP) group — 72 men, isolated diastolic hypertension (IDH) group — 70, systolic-diastolic hypertension (SDH) group — 76.

Results. According to videocapillaroscopy and laser Doppler flow­metry, no reliable intergroup differences were found at the level of capillaries and precapillary arterioles. According to photoplethymography, men with SDH compared to the NBP group had higher AIp75 (augmentation index normalized to 75 bpm) (7,35 vs -5,4%; p<0,001), vascular age (VA) (49 vs 43 years; p<0,001) and reflection index (RI) (38 vs 29,1%; p<0,001), while patients with IDH had higher RI (35,3 vs 29,1%; p<0,001), respectively.

Conclusion. Men with IDH and SDH do not have capillary rarefaction, tone changes, or constrictor and dilator activity of skin precapillary arterioles. Men with IDH and SDH are characterized by a higher tone of smooth muscle cells of terminal muscular arteries and distributing arterioles, and men with SDH also have higher arterial stiffness.

About the Authors

A. I. Korolev
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



V. S. Ososkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. A. Fedorovich
National Medical Research Center for Therapy and Preventive Medicine; Institute of Biomedical Problems
Russian Federation

Moscow



M. G. Chashchin
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



V. A. Dadaeva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. V. Strelkova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



K. V. Omelyanenko
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



M. A. Mikhailova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. Y. Gorshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Balanova YuA, Shalnova SA, Imaeva AE, et al. Prevalence, Awareness, Treatment and Control of Hypertension in Russian Federation (Data of Observational ESSERF-2 Study). Rational Pharmacotherapy in Cardiology. 2019;15(4):450-66. (In Russ.) doi:10.20996/1819-6446-2019-15-4-450-466.

2. Kushakovsky MS. Essential hypertension (hypertension). The causes, mechanisms, clinical features, treatment. St. Petersburg, Foliant publishing house, 2002. 414 p. 5 publication, significantly expanded and revised. (In Russ.) ISBN: 5-93929-045-0.

3. Makolkin VI, Podzolkov VI, Pablov VI, et al. Microcirculation in arterial hypertension. Kardiologiia. 2003;43(5):60-7. (In Russ.)

4. Frohlich ED, Ventura H. Pathophysiology: disease mechanisms. Hypertension. 2009:1-14.

5. Makolkin VI. Microcirculation and target organ damage in arterial hypertension. Kardiologiia. 2006;2:83-5. (In Russ.)

6. Laurent S, Boutouyrie P. The Structural Factor of Hypertension: Large and Small Artery Alterations. Circ Res. 2015;116(6):1007-21. doi:10.1161/CIRCRESAHA.116.303596.

7. Podolinny GI, Chirita IL. Muscular and elastic vessels as members of pathogenesis in arterial hypertension. Bulletin of the Pridnestrovian University. Series: Medical, biological and chemical sciences. 2016; 2(53):47-51. (In Russ.) EDN XBVMMP.

8. Romero CA, Alfie J, Galarza C, et al. Hemodynamic circulatory pat­terns in young patients with predominantly diastolic hyperten­sion. J Am Soc Hypertens. 2013;7(2):157-62. doi:10016/j.jash.2013.01.001.

9. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Wind­kessel. Med Biol Eng Comput. 2009;47(2):131-41. doi:10.1007/s11517-008-0359-2.

10. Korolev AI, Fedorovich AA, Gorshkov AY, et al. Structural and fun­ctional state of various parts of skin microcirculation at an early stage of hypertension in working-age men. Microvasc Res. 2023: 145;104440. doi:10.1016/j.mvr.2022.104440.

11. Korolev AI, Fedorovich AA, Gorshkov AYu, et al. Photoplethysmo­graphy factors associated with undiagnosed hypertension in men with low and moderate cardiovascular risk. Cardiovascular Therapy and Prevention. 2023;22(7):3649. (In Russ.) doi:10.15829/1728-8800-2023-3649. EDN JJRXGL.

12. Kozlov VI. Capillaroscopy in clinical practice: monograph. M: Practical medicine. 2015. 232 p. (In Russ.) ISBN: 978-5-98811-342-3.

13. Korolev AI, Fedorovich AA, Gorshkov AYu, et al. Upper limbs skin microvascular characteristics in healthy men of working age. Russian Journal of Preventive Medicine. 2021;24(7):60-9. (In Russ.) doi:10.17116/profmed20212407160.

14. Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of os­cilla­tions in peripheral blood circulation measured by Doppler technique. IEEE Trans Biomed Eng. 1999;46(10):1230-9. doi:10.1109/10/790500.

15. Fedorovich AA. The functional state of regulatory mechanisms of the microcirculatory blood flow in normal conditions and in arterial hypertension according to laser Doppler flowmetry. Regional blood circulation and microcirculation. 2010;9(1):49-60. (In Russ.) doi:10.24884/1682-6655-2010-9-1-49-60.

16. Mordvinova EV, Oschepkova EV, Fedorovich AA, et al. 2014. The functional state of microcirculatory vessels in patients with arterial hypertension I-II degree with different degrees of cardiovascular risk. Systemic Hypertension. 2014;11(2):29-35. (In Russ.) doi:10.26442/2075-082X_11.2.29-35.

17. Rogoza AN. Non-invasive methods for determining the rigidity of the main arteries. Functional Diagnostics. 2007;3:17-32. (In Russ.)

18. Prasad A, Dunnill GS, Mortimer PS, et al. Capillary rarefaction in the forearm skin in essential hypertension. J Hypertens. 1995; 13:265-8. PMID:7615958.

19. Antonios TF, Singer DR, Markandu ND, et al. Structural skin capil­lary rarefaction in essential hypertension. Hypertension. 1999;33: 998-1001. doi:10.1161/01.hyp.33.4.998.

20. Serné EH, Gans RO, ter Maaten JC, et al. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001;38:238-42. doi:10.1161/01.hyp.38.2.238.

21. Krupatkin AI. Blood flow oscillations — new diagnostic language in microvascular research. Regional blood circulation and microcirculation. 2014;13(1):83-99. (In Russ.) doi:10.24884/1682-6655-2014-13-1-83-99.

22. Jung F, Leithäuser B, Landgraf H, et al. Laser Doppler flux me­asure­ment for the assessment of cutaneous microcirculation-critical remarks. Clin Hemorheol Microcirc. 2013;55(4):411-6. doi:10.3233/CH-131778.

23. Vasilyev AP, Streltsova NN, Sekisova MA, et al. Functional characteristics of microcirculation and their prognostic value in patients with arterial hypertension. Cardiovascular Therapy and Prevention. 2011;10(5):14-9. (In Russ.) doi:1728-8800-2011-5-14-19.

24. Shlyakhto EV, Conrady AΟ. Causes and consequences of sympathetic overactivity in hypertension. Arterial Hypertension. 2003; 9(3):81-8. (In Russ.) doi:10.18705/1607-419X-2003-9-3-81-88.

25. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens. 2001;19:921-30. doi:10.1097/00004872-200105000-00013.

26. Ivanov SV, Ryabikov AN, Malyutina SK. Arterial stiffness and pul­se wave reflection in association with arterial hypertension. Bulletin of Siberian Branch of Russian Academy of Medical Sciences. 2008;28(3):9-12. (In Russ.)

27. Tuktarov AM, Kazanceva TS, Filippov AE, et al. The Relationship of Modifiable Risk Factors with Indicators of Arterial Stiffness and Vascular Age in Patients with Arterial Hypertension. Rational Pharmacotherapy in Cardiology. 2021;17(1):42-8. (In Russ.) doi:10.20996/1819-6446-2021-02-12.

28. Milyagin VA, Filichkin DE, Shpynev KV, et al. Contour analysis of central and peripheral pulse wave in healthy people and in hypertensive patients. Arterial Hypertension. 2009;15(1):78-85. (In Russ.) doi:10.18705/1607-419X-2009-15-1-78-85.

29. Semeniago EF, Salivonchik DP. Arterial hypertension: a path from unchanged transmitral bloodstream to dysfunction. Health and Ecology Issues. 2020;(3):27-35. (In Russ.) doi:10.51523/2708-6011.2020-17-3-4.

30. Netchessova TA. Obesity and hypertension. Medical practice: scientific and practical therapeutic journal. 2021;2(77):49-52. (In Russ) EDN OROXIR.

31. Kim MS, Kim WJ, Khera AV, et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analy­sis of observational and Mendelian randomization studies. Eur Heart J. 2021;42(34):3388-403. doi:10.1093/eurheartj/ehab454.

32. Kratzer JT, Lanaspa MA, Murphy MN, et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci USA. 2014;111:3763-8. doi:10.1073/pnas.1320393111.

33. Kuwabara M. Hyperuricemia, Cardiovascular Disease, and Hypertension. Pulse (Basel). 2016;3:242-52. doi:10.1159/000443769.

34. Yu MA, Sánchez-Lozada LG, Johnson RJ, et al. Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28:1234-42.


Supplementary files

What is already known about the subject?

  • Microcirculation changes are one of the main patho­genesis mechanisms for hypertension (HTN).

What might this study add?

  • Photoplethysmography data demonstrate a greater tone of smooth muscle cells of terminal muscular ar­teries and distributing arterioles in men with iso­lated diastolic HTN, which indicates an increase in total peripheral resistance as a ground for isolated diastolic hypertension.
  • Men with systolic-­diastolic hypertension are cha­racterized by greater arterial stiffness and smooth mus­cle tone, which indicates a combination of an increase in total peripheral resistance and ar­terial stiffness as a ground for systolic-­diastolic hyper­tension.

Review

For citations:


Korolev A.I., Ososkov V.S., Fedorovich A.A., Chashchin M.G., Dadaeva V.A., Strelkova A.V., Omelyanenko K.V., Mikhailova M.A., Gorshkov A.Y., Drapkina O.M. Structural and functional state of the skin microcirculation in men with different phenotypes of hypertension of low and moderate cardiovascular risk. Cardiovascular Therapy and Prevention. 2024;23(10):4133. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4133. EDN: MNBJJE

Views: 329


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)