Conventional (D-dimer) and potential (pentraxin 3 and sST2) biomarkers in long-term prognosis of adverse cardiovascular events in COVID-19 survivors without significant cardiovascular diseases
https://doi.org/10.15829/1728-8800-2025-4345
EDN: CVXRKH
Abstract
Aim. To determine the potential role of conventional and potential biomarkers in predicting major adverse cardiovascular events (MACE) in the long-term period after coronavirus disease 2019 (COVID-19).
Material and methods. On the day of hospitalization, 112 inpatients with a confirmed diagnosis of COVID-19 were assessed for biomarkers such as high-sensitivity troponin T (hsTnT) and troponin I (hsTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), D-dimer, soluble tumorigenicity suppression protein (sST2) and pentraxin 3 (PTX3). COVID-19 survivors were followed for a median period of 366 [365; 380] days after discharge from the COVID hospital, assessing the incidence of MACE (myocardial infarction, pulmonary embolism, cerebrovascular accident, cardiovascular death).
Results. During the one-year follow-up period, the study endpoints (MACE) were registered in 14 (12,5%) patients. Of the cardiovascular biomarkers studied, differences were found in the levels of both conventional (hsTnT, D-dimer) and potential biomarkers (sST2, PT3) in the groups of patients with and without MACE. Groups did not differ significantly in NT-proBNP and hsTnI levels (p>0,05). According to multivariate analysis, the strongest predictors of MACE development are body mass index >29,5 kg/m2 (Area Under The ROC Curve (AUC) 0,672, sensitivity 45%, specificity 23,9%, p=0,001), PTX3 >3,1 ng/ml (AUC 0,885, sensitivity 94,0%, specificity 82,1%, p=0,001), sST2 >36 ng/ml (sensitivity 92,9%, specificity 33%, p=0,001), D-dimer >0,4 μg/ml (AUC 0,787, sensitivity 93%, specificity 72,4%, p=0,049). A mathematical model based on the concentration of PTX3, sST2 and D-dimer biomarkers predicts MACE within 1 year after COVID-19 with a sensitivity of 92,9%, specificity of 61% and predictive accuracy of 90,5% (p<0,001).
Conclusion. Determination of the concentration of biomarkers such as D-dimer, sST2, PT3 can be used to predict long-term MACE in patients after COVID-19.
About the Authors
T. V. KanaevaRussian Federation
Saratov
N. A. Karoli
Russian Federation
Saratov
References
1. Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. Newly diagnosed diseases and the frequency of their occurrence in patients after a new coronavirus infection. Results of an International Register "Dynamics Analysis of Comorbidities in SARS-CoV-2 Survivors (ACTIV SARS-CoV-2)" (12-month follow-up). Russian Journal of Cardiology. 2023;28(4):5424. (In Russ.) doi:10.15829/1560-4071-2023-5424.
2. Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020; 94(7):e00127-20. doi:10.1128/JVI.00127-20.
3. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80.e8. doi:10.1016/j.cell.2020.02.052.
4. Zhang H, Zhang JM, Penninger Y. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(5):865-70. doi:10.1007/s00134-020-05985-9.
5. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4):2000607. doi:10.1183/13993003.00607-2020.
6. Hendren NS, Hendren JL. Unique patterns of cardiovascular involvement in COVID-19. J Card Fail. 2020;26(7):466-9. doi:10.1016/j.cardfail.2020.03.006.
7. Mukkawar RV, Reddy H, Rathod N, et al. The long-term cardiovascular impact of COVID-19: Pathophysiology, clinical manifestations, and management. Cureus. 2024;16(8):e66554. doi:10.7759/cureus.66554.
8. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi:10.1001/jama.2020.1585.
9. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. doi:10.1001/jamacardio.2020.0950.
10. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. doi:10.1111/j.1365-2362.2009.02153.x.
11. Guo T. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). J Geriatr Cardiol. 2020;7(5):811-2. doi:10.11909/j.issn.1671-5411.2020.05.019.
12. Zheng YY, Zheng YT, Ma JY. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60. doi:10.1038/s41569-020-0374-6.
13. Doyen D, Moceri P, Ducreux D, et al. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. doi:10.1016/S0140-6736(20)30860-1.
14. Guan W, Guan Z, Ni Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(11):1012-20. doi:10.1056/NEJMoa2002032.
15. Babapoor-Farrokhran S, Gill D, Walker J, et al. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723. doi:10.1016/j.lfs.2020.117723.
16. Soumya RS, Unni TG, Raghu KG. Impact of COVID-19 on the cardiovascular system: A review of available reports. Cardiovasc Drugs Ther. 2021;35(3):411-25. doi:10.1007/s10557-020-07073-y.
17. Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463-71. doi:10.1016/j.hrthm.2020.05.001.
18. Abou-Ismail MY, Diamond A, Kapoor S, et al. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 2020;194:101-15. doi:10.1016/j.thromres. 2020.06.029.
19. Savla SR, Prabhavalkar KS, Bhatt LK. Cytokine storm associated coagulation complications in COVID-19 patients: Pathogenesis and Management. Expert Rev Anti Infect Ther. 2021;19(11):1397-413. doi:10.1080/14787210.2021.1915129.
20. Brunetta E, Folci M, Bottazzi B, et al. Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nat Immunol. 2021;22(1):19-24. doi:10.1038/s41590-020-00832-x.
21. Caro-Codón J, Rey JR, Buño A, et al. Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur J Heart Fail. 2021;23(3):456-64. doi:10.1002/ejhf.2095.
22. Kanaeva TV, Karoli NA. Prognostic role of ST2 biomarker in development of adverse cardiovascular events in patients with COVID-19. Int J Cardiol. 2024;12(42):16-23. (In Russ.) doi:10.24412/2311-1623-2024-42-16-23.
23. Motloch LJ, Jirak P, Gareeva D, et al. Cardiovascular Biomarkers for Prediction of in-hospital and 1-Year Post-discharge Mortality in Patients With COVID-19 Pneumonia. Front Med (Lausanne). 2022;9:906665. doi:10.3389/fmed.2022.906665.
24. Reyes LF, Garcia-Gallo S, Murthy S, et al. Major adverse cardiovascular events (MACE) in patients with severe COVID-19 registered in the ISARIC WHO clinical characterization protocol: A prospective, multinational, observational study. J Crit Care. 2023;77:154318. doi:10.1016/j.jcrc.2023.154318.
25. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. doi:10.1016/S0140-6736(20)30566-3.
26. Sandoval Y, Januzzi JL Jr, Jaffe AS. Cardiac troponin for assessment of myocardial injury in COVID-19: JACC review topic of the week. J Am Coll Cardiol. 2020;76(10):1244-58. doi:10.1016/j.jacc.2020.06.068.
27. Gohar A, Chong JPC, Liew OW, et al. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs reduced ejection fraction: Cardiac troponin assays in prognosis. Eur J Heart Fail. 2017;19(12):1638-47. doi:10.1002/ejhf.911.
28. Fiedler L, Motloch LJ, Jirak P, et al. Investigation of hs-Tn I and sST-2 as potential predictors of long-term cardiovascular risk in patients with survived hospitalization for COVID-19 pneumonia. Biomedicines. 2022;10(11):2889. doi:10.3390/biomedicines10112889.
Supplementary files
Review
For citations:
Kanaeva T.V., Karoli N.A. Conventional (D-dimer) and potential (pentraxin 3 and sST2) biomarkers in long-term prognosis of adverse cardiovascular events in COVID-19 survivors without significant cardiovascular diseases. Cardiovascular Therapy and Prevention. 2025;24(4):4345. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4345. EDN: CVXRKH